Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

The culprit in millions of bat deaths since 2006? A 'vampire' fungus.

White-nose syndrome is nearly as lethal to bats as the Black Plague was for humans.

Photo by Igam Ogam on Unsplash
  • White-nose syndrome has killed at least 6.7 million bats, though this estimate was made in 2012, and the current figure is almost certainly much higher.
  • Bats serve a crucial role in our ecosystem and economy, and white-nose syndrome is already pushing many species to the brink of extinction.
  • Researchers and scientists are working hard to develop novel methods to cure white-nose syndrome; a few methods have shown promise, but none have yet been deployed in the field.

The fungus Pseudogymnoascus destructans was certainly well named. As it continues to spread across North America, the P. destructans has been precisely destroying a critical part of the ecosystem: bats. Between 2006 and 2012, the fungus killed 6.7 million bats. When it takes hold, the fungus kills between 70 percent and 90 percent of the bat population on average, sometimes completely eradicating a given colony.

No accurate estimates have been made for after 2012, but, if the trend has persisted, then the number is almost certainly millions more.

North America first encountered the fungus in February 2006 in upstate New York after a caver took a photograph of a bat with an unusually white, fuzzy nose. P. destructans primarily affects the skin and tends to cluster around the nose, giving the disease its common name: white-nose syndrome.

Why is white-nose syndrome so deadly?

A group of bats with white-nose syndrome. Flickr user Government of Alberta

Although the exact mechanism behind its lethality is unclear, researchers have found that bats with white-nose syndrome have skin damage, particularly on their wings. The infection also knocks bats' physiology out of whack; infected bats have high levels of carbon dioxide and potassium in their blood, which affects their heart function.

The deaths, however, are most clearly linked to the odd behavioral changes that take place. White-nose syndrome only appears to affect hibernating bats, who normally don't do too much during the winter. But bats with white-nose syndrome go into a flurry of activity when they're supposed to be resting, flying around during the day in freezing temperatures. One study found that infected bats used twice as much energy as healthy ones, burning up the fat reserves they need to survive the winter.

Why do bats matter?

From a conservation perspective, any animal threatened with extinction is a tragedy. But what are the practical impacts of this plague? When we look at the role of bats in our ecosystem, their disappearance would have major impacts.

Bats make up a full fifth of all mammals on the planet. Fortunately, only hibernating species are affected by white-nose syndrome, but their disappearance would still wreak havoc on the ecosystem. Bats eat insects: In fact, a single little brown bat (which are affected by white-nose syndrome) can eat 1,000 insects in an hour. This service — which we currently get for free — is actually incredibly valuable to the agricultural industry. Were bats not around to eat these pests, it could cost the agricultural industry between $3.7 billion and $53 billion per year.

Not only that, but bats contribute to the spread of plant life. They distribute seeds from fruits and, alongside birds, bees, and other insects, serve as crucial pollinators. Three-quarters of our food crops rely on animal-mediated pollination, including many fruits and vegetables. Furthermore, pollinated plants are foundational elements of the food chain and provide habitats for other animals. If a large segment of the bat population were to disappear, it would have cascading effects for the rest of the ecosystem.

So far, the northern long-eared bat, the gray bat, and the Indiana bat have been listed as endangered or threatened with extinction due to white-nose syndrome. The population of little brown bats, previously one of the most common species in North America, is just 1 percent of what it was prior to the arrival of P. destructans. So, it's clear there's a major problem here. What have we been doing about it?

Reasons to be optimistic

Bat wing under UV light

A bat wing under UV light. The orange specks are P. destructans, which causes white-nose syndrome.

Turner et al., 2018

Fortunately, it's not all doom and gloom. Researchers are hard at work trying to find a cure for white-nose syndrome, though no silver bullet has yet been found. Researchers Jonathan Palmer, Kevin Drees, Jeffrey Foster, and Daniel Lindner compared the fungus's genetic code to some similar strains and noticed a glaring weakness. In an interview with the Washington Post, Lindner said, "[P. destructans is] something that has evolved for millions of years in the dark. Its ability to repair damage caused by UV light [...] seems to be entirely lacking in this fungus. […] I'd go as far as to say it's a vampire fungus. It doesn't go up in a puff of smoke, [but] it's gone down an evolutionary path so far that it's really a creature of the dark." They found that only a few seconds of UV exposure is sufficient to kill the fungal infection, but the problem is how to treat bats en masse in the wild.

Other treatments are looking at using antifungal bacteria, such as Rhodococcus rhodochrous, which has shown promise in preventing the P. destructans from gaining a foothold and has even reduced the amount of fungus on already-infected bats. But again, the issue is how to treat an entire species. And, even if some mass delivery system of UV radiation, anti-fungal bacteria, or another treatment were developed, there is always the risk that the treatment could be worse than the cure. Scientists are accordingly moving cautiously, not wanting to worsen an already bad situation. With any luck, though, the future will be one with bats in it.

LIVE ON MONDAY | "Lights, camera, activism!" with Judith Light

Join multiple Tony and Emmy Award-winning actress Judith Light live on Big Think at 2 pm ET on Monday.

Big Think LIVE

Add event to calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo

Keep reading Show less

Neom, Saudi Arabia's $500 billion megacity, reaches its next phase

Construction of the $500 billion dollar tech city-state of the future is moving ahead.

Credit: Neom
Technology & Innovation
  • The futuristic megacity Neom is being built in Saudi Arabia.
  • The city will be fully automated, leading in health, education and quality of life.
  • It will feature an artificial moon, cloud seeding, robotic gladiators and flying taxis.
Keep reading Show less

Your emotions are the new hot commodity — and there’s an app for that

Many of the most popular apps are about self-improvement.

Drew Angerer/Getty Images
Personal Growth

Emotions are the newest hot commodity, and we can't get enough.

Keep reading Show less

Study details the negative environmental impact of online shopping

Frequent shopping for single items adds to our carbon footprint.

A truck pulls out of a large Walmart regional distribution center on June 6, 2019 in Washington, Utah.

Photo by George Frey/Getty Images
Politics & Current Affairs
  • A new study shows e-commerce sites like Amazon leave larger greenhouse gas footprints than retail stores.
  • Ordering online from retail stores has an even smaller footprint than going to the store yourself.
  • Greening efforts by major e-commerce sites won't curb wasteful consumer habits. Consolidating online orders can make a difference.
Keep reading Show less
Future of Learning

The key to better quality education? Make students feel valued.

Building a personal connection with students can counteract some negative side effects of remote learning.

Scroll down to load more…
Quantcast