The neuroscience behind ‘gut feelings’

Fight or flight? We've all been there. Now we have an understanding of how it works.

gut bacteria
  • There is such a thing in neuroscience as a 'gut feeling.'
  • We don't quite know what it's saying yet, but we have an idea.
  • "Gut signals are transmitted at epithelial-neural synapses through the release of … serotonin."

Have you ever had a 'gut feeling?' That moment when you just knew? Did you ever wonder why that was? Research is starting to make inroads towards an answer.

A recent study led by Melanie Maya Kaelberer of Duke along with a team of others looked at mice to determine how the stomach communicated with the brain. Historically, it was believed that the stomach communicated with the brain indirectly — typically through something called neuropeptide signaling (peptides are like proteins but smaller; neurons use neuropeptides to communicate); however, the results from this study suggest something much more direct, much more nuanced, and a little bit more complicated.

Let's break that down — first by quoting the National Institute of Health: "Epithelial cells form barriers that separate different biological compartments in the body." They have a role in regulating what is communicated and what is carried between these different compartments.

Serotonin is a neurotransmitter. A neurotransmitter is a chemical that is released when a signal arrives from somewhere else in the body and acts as a bridge for the signal to move from one neuron to the next.

What makes the result of the study noteworthy is the fact that — in addition to neuropeptides — "further studies revealed that enteroendocrine cells activate sensory neurons within tens to hundreds of milliseconds, a time scale typical of synaptic transmission rather than neuropeptide signaling."

In other words: something arrived in the stomach and it was known, fast. Think of the speed with which your body lets you know that a fly has landed in your skin and think what it means that your body knows what's in its stomach at comparable speeds. (We know that gut bacteria responds to exercise, but this study raises an asterisk of a question all its own: how quickly does gut bacteria respond to exercise in real time?) It's hypothesized that the reason why this happens is to relay where something is in the gut and how it exists in space-time — whether it's just arrived, how it's immediately reacting to the digestive properties of the stomach, and so on.

Benjamin Hoffman and Ellen A. Lumpkin found the results intriguing, writing in a review of the study that it led them to wonder, "What are the molecular mechanisms of neurotransmitter release in enteroendocrine cells?" Who specifically mediates this synaptic transmission? And how are these neuron signals modulated in a stomach full of acid, anyway? What happens when someone has an intestinal disorder?

Perhaps the answer is already known to someone deep within the depths of their gut.

How tiny bioelectronic implants may someday replace pharmaceutical drugs

Scientists are using bioelectronic medicine to treat inflammatory diseases, an approach that capitalizes on the ancient "hardwiring" of the nervous system.

Left: The vagus nerve, the body's longest cranial nerve. Right: Vagus nerve stimulation implant by SetPoint Medical.

Credit: Adobe Stock / SetPoint Medical
Sponsored by Northwell Health
  • Bioelectronic medicine is an emerging field that focuses on manipulating the nervous system to treat diseases.
  • Clinical studies show that using electronic devices to stimulate the vagus nerve is effective at treating inflammatory diseases like rheumatoid arthritis.
  • Although it's not yet approved by the US Food and Drug Administration, vagus nerve stimulation may also prove effective at treating other diseases like cancer, diabetes and depression.
Keep reading Show less

U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

U.S. Navy ships

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

Is it time to decriminalize prostitution? Two New York bills answer yes in unique ways

One bill hopes to repeal the crime of selling sex and expand social services; the other would legalize the entire sex trade.

Credit: Chandan Khanna/Getty Images
Politics & Current Affairs
  • Today in the majority of the United States, it is a crime to sell sex, buy it, or promote its sale.
  • The Sex Trade Survivors Justice & Equality Act would decriminalize prostitution in New York state while maintaining punitive measures against buyers and pimps.
  • Opponents suggest this law would only push the illegal sex trade further underground and seek full decriminalization for everyone involved.
  • Keep reading Show less

    Physicist creates AI algorithm that may prove reality is a simulation

    A physicist creates an AI algorithm that predicts natural events and may prove the simulation hypothesis.

    Pixellated head simulation.

    Credit: Adobe Stock
    Surprising Science
    • Princeton physicist Hong Qin creates an AI algorithm that can predict planetary orbits.
    • The scientist partially based his work on the hypothesis which believes reality is a simulation.
    • The algorithm is being adapted to predict behavior of plasma and can be used on other natural phenomena.
    Keep reading Show less
    Quantcast