Big ideas.
Once a week.
Subscribe to our weekly newsletter.

One victim can break our hearts. Remember the image of the young Syrian boy discovered dead on a beach in Turkey in 2015? Donations to relief agencies soared after that image went viral. However, we feel less compassion as the number of victims grows. Are we incapable of feeling compassion for large groups of people who suffer a tragedy, such as an earthquake or the recent Sri Lanka Easter bombings? Of course not, but the truth is we aren't as compassionate as we'd like to believe, because of a paradox of large numbers. Why is this?
Compassion is a product of our sociality as primates. In his book, The Expanding Circle: Ethics, Evolution, and Moral Progress, Peter Singer states, "Human beings are social animals. We were social before we were human." Mr. Singer goes on to say, "We can be sure that we restrained our behavior toward our fellows before we were rational human beings. Social life requires some degree of restraint. A social grouping cannot stay together if its members make frequent and unrestrained attacks on one another."
Attacks on ingroups can come from forces of nature as well. In this light, compassion is a form of expressed empathy to demonstrate camaraderie.
Yet even after hundreds of centuries of evolution, when tragedy strikes beyond our community, our compassion wanes as the number of displaced, injured, and dead mounts.
The drop-off in commiseration has been termed the collapse of compassion. The term has also been defined in The Oxford Handbook of Compassion Science: ". . . people tend to feel and act less compassionately for multiple suffering victims than for a single suffering victim."
That the drop-off happens has been widely documented, but at what point this phenomenon happens remains unclear. One paper, written by Paul Slovic and Daniel Västfjäll, sets out a simple formula, ". . . where the emotion or affective feeling is greatest at N =1 but begins to fade at N = 2 and collapses at some higher value of N that becomes simply 'a statistic.'"
The ambiguity of "some higher value" is curious. That value may relate to Dunbar's Number, a theory developed by British anthropologist, Robin Dunbar. His research centers on communal groups of primates that evolved to support and care for larger and larger groups as their brains (our brains) expanded in capacity. Dunbar's is the number of people with whom we can maintain a stable relationship — approximately 150.
Some back story
Professor Robin Dunbar of the University of Oxford has published considerable research on anthropology and evolutionary psychology. His work is informed by anthropology, sociology and psychology. Dunbar's Number is a cognitive boundary, one we are likely incapable of breaching. The number is based around two notions; that brain size in primates correlates with the size of the social groups they live among and that these groups in human primates are relative to communal numbers set deep in our evolutionary past. In simpler terms, 150 is about the maximum number of people with whom we can identify with, interact with, care about, and work to protect. Dunbar's Number falls along a logorithmic continuum, beginning with the smallest, most emotionally connected group of five, then expanding outward in multiples of three: 5, 15, 50, 150. The numbers in these concentric circles are affected by multiple variables, including the closeness and size of immediate and extended families, along with the greater cognitive capacity of some individuals to maintain stable relationships with larger than normal group sizes. In other words, folks with more cerebral candlepower can engage with larger groups. Those with lesser cognitive powers, smaller groups.
The number that triggers "compassion collapse" might be different for individuals, but I think it may begin to unravel along the continuum of Dunbar's relatable 150. We can commiserate with 5 to 15 to 150 people because upon those numbers, we can overlay names and faces of people we know: our families, friends and coworkers, the members of our clan. In addition, from an evolutionary perspective, that number is important. We needed to care if bands of our clan were being harmed by raids, disaster, or disease, because our survival depended on the group staying intact. Our brains developed the capacity to care for the entirety of the group but not beyond it. Beyond our ingroup was an outgroup that may have competed with us for food and safety and it served us no practical purpose to feel sad that something awful had happened to them, only to learn the lessons so as to apply them for our own survival, e.g., don't swim with hippos.
Lapses
Imagine losing 10 family members in a house fire. Now instead, lose 10 neighbors, 10 from a nearby town, 10 from Belgium, 10 from Vietnam 10 years ago. One could almost feel the emotion ebbing as the sentence drew to a close.
There are two other important factors which contribute to the softening of our compassion: proximity and time. While enjoying lunch in Santa Fe, we can discuss the death toll in the French revolution with no emotional response but might be nauseated to discuss three children lost in a recent car crash around the corner. Conflict journalists attempt to bridge these geotemporal lapses but have long struggled to ignite compassion in their home audience for far-flung tragedies, Being a witness to carnage is an immense stressor, but the impact diminishes across the airwaves as the kilometers pile up.
A Dunbar Correlation
Where is the inflection point at which people become statistics? Can we find that number? In what way might that inflection point be influenced by the Dunbar 150?
"Yes, the Dunbar number seems relevant here," said Gad Saad, PhD., the evolutionary behavioral scientist from the John Molson School of Business at Concordia University, Montreal, in an email correspondence. Saad also recommended Singer's work.
I also went to the wellspring. I asked Professor Dunbar by email if he thought 150 was a reasonable inflection point for moving from compassion into statistics. He graciously responded, lightly edited for space.
Professor Dunbar's response:
"The short answer is that I have no idea, but what you suggest is perfect sense. . . . One-hundred and fifty is the inflection point between the individuals we can empathize with because we have personal relationships with them and those with whom we don't have personalized relationships. There is, however, also another inflection point at 1,500 (the typical size of tribes in hunter-gatherer societies) which defines the limit set by the number of faces we can put names to. After 1,500, they are all completely anonymous."
I asked Dunbar if he knows of or suspects a neurophysiological aspect to the point where we simply lose the capacity to manage our compassion:
"These limits are underpinned by the size of key bits of the brain (mainly the frontal lobes, but not wholly). There are a number of studies showing this, both across primate species and within humans."
In his literature, Professor Dunbar presents two reasons why his number stands at 150, despite the ubiquity of social networking: the first is time — investing our time in a relationship is limited by the number of hours we have available to us in a given week. The second is our brain capacity measured in primates by our brain volume.
Friendship, kinship and limitations
"We devote around 40 percent of our available social time to our 5 most intimate friends and relations," Dunbar has written, "(the subset of individuals on whom we rely the most) and the remaining 60 percent in progressively decreasing amounts to the other 145."
These brain functions are costly, in terms of time, energy and emotion. Dunbar states, "There is extensive evidence, for example, to suggest that network size has significant effects on health and well-being, including morbidity and mortality, recovery from illness, cognitive function, and even willingness to adopt healthy lifestyles." This suggests that we devote so much energy to our own network that caring about a larger number may be too demanding.
"These differences in functionality may well reflect the role of mentalizing competencies. The optimal group size for a task may depend on the extent to which the group members have to be able to empathize with the beliefs and intentions of other members so as to coordinate closely…" This neocortical-to-community model carries over to compassion for others, whether in or out of our social network. Time constrains all human activity, including time to feel.
As Dunbar writes in The Anatomy of Friendship, "Friendship is the single most important factor influencing our health, well-being, and happiness. Creating and maintaining friendships is, however, extremely costly, in terms of both the time that has to be invested and the cognitive mechanisms that underpin them. Nonetheless, personal social networks exhibit many constancies, notably in their size and their hierarchical structuring." Our mental capacity may be the primary reason we feel less empathy and compassion for larger groups; we simply don't have the cerebral apparatus to manage their plights. "Part of friendship is the act of mentalizing, or mentally envisioning the landscape of another's mind. Cognitively, this process is extraordinarily taxing, and as such, intimate conversations seem to be capped at about four people before they break down and form smaller conversational groups. If the conversation involves speculating about an absent person's mental state (e.g., gossiping), then the cap is three — which is also a number that Shakespeare's plays respect."
We cannot mentalize what is going on in the minds of people in our groups much beyond our inner circle, so it stands to reason we cannot do it for large groups separated from us by geotemporal lapses.
Emotional regulation
In a paper, C. Daryl Cameron and Keith B. Payne state, "Some researchers have suggested that [compassion collapse] happens because emotions are not triggered by aggregates. We provide evidence for an alternative account. People expect the needs of large groups to be potentially overwhelming, and, as a result, they engage in emotion regulation to prevent themselves from experiencing overwhelming levels of emotion. Because groups are more likely than individuals to elicit emotion regulation, people feel less for groups than for individuals."
This argument seems to imply that we have more control over diminishing compassion than not. To say, "people expect the needs of large groups to be potentially overwhelming" suggests we consciously consider what that caring could entail and back away from it, or that we become aware that we are reaching and an endpoint of compassion and begin to purposely shift the framing of the incident from one that is personal to one that is statistical. The authors offer an alternative hypothesis to the notion that emotions are not triggered by aggregates, by attempting to show that we regulate our emotional response as the number of victims becomes perceived to be overwhelming. However, in the real world, for example, large death tolls are not brought to us one victim at a time. We are told, about a devastating event, then react viscerally.
If we don't begin to express our emotions consciously, then the process must be subconscious, and that number could have evolved to where it is now innate.
Gray matter matters
One of Dunbar's most salient points is that brain capacity influences social networks. In his paper, The Social Brain, he writes: "Path analysis suggests that there is a specific causal relationship in which the volume of a key prefrontal cortex subregion (or subregions) determines an individual's mentalizing skills, and these skills in turn determine the size of his or her social network."
It's not only the size of the brain but in fact, mentalizing recruits different regions for ingroup empathy. The Stanford Center for Compassion and Altruism Research and Education published a study of the brain regions activated when showing empathy for strangers in which the authors stated, "Interestingly, in brain imaging studies of mentalizing, participants recruit more dorsal portions of the medial prefrontal cortex (dMPFC; BA 8/9) when mentalizing about strangers, whereas they recruit more ventral regions of the medial prefrontal cortex (BA 10), similar to the MPFC activation reported in the current study, when mentalizing about close others with whom participants experience self-other overlap."⁷
It's possible the region of the brain that activates to help an ingroup member evolved for good reason, survival of the group. Other regions may have begun to expand as those smaller tribal groups expanded into larger societies.
Rabbit holes
There is an eclectic list of reasons why compassion may collapse, irrespective of sheer numbers:
(1) Manner: How the news is presented affects viewer framing. In her book, European Foreign Conflict Reporting: A Comparative Analysis of Public News, Emma Heywood explores how tragedies and war are offered to the viewers, which can elicit greater or lesser compassionate responses. "Techniques, which could raise compassion amongst the viewers, and which prevail on New at Ten, are disregarded, allowing the victims to remain unfamiliar and dissociated from the viewer. This approach does not encourage viewers to engage with the sufferers, rather releases them from any responsibility to participate emotionally. Instead compassion values are sidelined and potential opportunities to dwell on victim coverage are replaced by images of fighting and violence."
(2) Ethnicity. How relatable are the victims? Although it can be argued that people in western countries would feel a lesser degree of compassion for victims of a bombing in Karachi, that doesn't mean people in countries near Pakistan wouldn't feel compassion for the Karachi victims at a level comparable to what westerners might feel about a bombing in Toronto. Distance has a role to play in this dynamic as much as in the sound evolutionary data that demonstrate a need for us to both recognize and empathize with people who look like our communal entity. It's not racism; it's tribalism. We are simply not evolved from massive heterogeneous cultures. As evolving humans, we're still working it all out. It's a survival mechanism that developed over millennia that we now struggle with as we fine tune our trust for others.
In the end
Think of compassion collapse on a grid, with compassion represented in the Y axis and the number of victims running along the X. As the number of victims increases beyond one, our level of compassion is expected to rise. Setting aside other variables that may raise compassion (proximity, familiarity etc.), the level continues to rise until, for some reason, it begins to fall precipitously.
Is it because we've become aware of being overwhelmed or because we have reached max-capacity neuron load? Dunbar's Number seems a reasonable place to look for a tipping point.
Professor Dunbar has referred to the limits of friendship as a "budgeting problem." We simply don't have the time to manage a bigger group of friends. Our compassion for the plight of strangers may drop of at a number equivalent to the number of people with who we can be friends, a number to which we unconsciously relate. Whether or not we solve this intellectual question, it remains a curious fact that the larger a tragedy is, the more likely human faces are to become faceless numbers.
Did early humans hibernate?
New anthropological research suggests our ancestors enjoyed long slumbers.
- Neanderthal bone fragments discovered in northern Spain mimic hibernating animals like cave bears.
- Thousands of bone fragments, dating back 400,000 years, were discovered in this "pit of bones" 30 years ago.
- The researchers speculate that this physiological function, if true, could prepare us for extended space travel.
Humans have a terrible sense of time. We think in moments, not eons, which accounts for a number of people that still don't believe in evolutionary theory: we simply can't imagine ourselves any differently than we are today.
Thankfully, scientists and researchers have vast imaginations. Their findings often depend on creative problem-solving. Anthropologists are especially adept at this skill, as their job entails imagining a prehistoric world in which humans and our forebears were very different creatures.
A new paper, published in the journal L'Anthropologie, takes a hard look at ancient bone health and arrives at a surprising conclusion: Neanderthals (and possibly early humans) might have endured long, harsh winters by hibernating.
Adaptability is the key to survival. Certain endotherms evolved the ability to depress their metabolism for months at a time; their body temperature and metabolic rate lowered while their breathing and heart rate dropped to nearly imperceptible levels. This handy technique solved a serious resource management problem, as food supplies were notoriously scarce during the frozen months.
While today the wellness industry eschews fat, it has long had an essential evolutionary function: it keeps us alive during times of food scarcity. As autumn months pass, large mammals become hyperphagic (experiencing intense hunger followed by overeating) and store nutrients in fat deposits; smaller animals bury food nearby for when they need a snack. This strategy is critical as hibernating animals can lose over a quarter of their body weight during winter.
For this paper, Antonis Bartsiokas and Juan-Luis Arsuaga, both in the Department of History and Ethnology at Democritus University of Thrace, scoured through remains of a "pit of bones" in northern Spain. In 1976, archaeologists found a 50-foot shaft leading down into a cave in Atapuerca, where thousands of bone fragments have since been discovered. Dating back 400,000 years—some of the fragments may be as old as 600,000 years—researchers believe the bodies were intentionally buried in this cave.
Evidence of ancient human hibernation / human hibernation for space travel | Dr Antonis Bartsiokas
While the fragments have been well studied in the intervening decades, Arsuaga (who led an early excavation in Atapuerca) and Bartsiokas noticed something odd about the bones: they displayed signs of seasonal variations. These proto-humans appear to have experienced annual bone growth disruption, which is indicative of hibernating species.
In fact, the remains of cave bears were also found in this pit, increasing the likelihood that the burial site was reserved for species that shared common features. This could be the result of a dearth of food for bears and Neanderthals alike. The researchers write that modern northerners don't need to sleep for months at a time; an abundance of fish and reindeer didn't exist in Spain, as they do in the Arctic. They write,
"The aridification of Iberia then could not have provided enough fat-rich food for the people of Sima during the harsh winter—making them resort to cave hibernation."
The notion of hibernating humans is appealing, especially to those in cold climates, but some experts don't want to put the cart before the horse. Large mammals don't engage in textbook hibernation; their deep sleep is known as a "torpor." Even then, the demands of human-sized brains could have been too large for extended periods of slumber.
Still, as we continually discover our animalistic origins to better understand how we evolved, the researchers note the potential value of this research.
"The present work provides an innovative approach to the physiological mechanisms of metabolism in early humans that could help determine the life cycle and physiology of extinct human species."
Bartsiokas speculates that this ancient mechanism could be coopted for space travel in the future. If the notion of hibernating humans sounds far-fetched, the idea has been contemplated for years, as NASA began funding research on this topic in 2014. As the saying goes, everything old is new again.
--
Stay in touch with Derek on Twitter and Facebook. His new book is "Hero's Dose: The Case For Psychedelics in Ritual and Therapy."
Study: Tripping might not be required for psychedelic therapy
Two different studies provide further evidence of the efficacy of psychedelics in treating depression.
- A phase 2 clinical trial by Imperial College London found psilocybin to be as effective at treating depression as escitalopram, a commonly prescribed antidepressant.
- A different study by the University of Maryland showed that blocking the hallucinogenic effects of magic mushrooms in mice did not reduce the antidepressant effect.
- Combined, these studies could lead to new ways of applying psychedelics to patient populations that don't want to trip.
Due to stigma, their illegal status and difficulty in finding control groups, research with psychedelics has been a challenge. But research increasingly shows that this class of drug has legitimate medicinal uses, and they may be just as good or even better than more traditional therapies.
Now, the Centre for Psychedelic Research at Imperial College London reports in the New England Journal of Medicine that when pitted against escitalopram (brand name: Lexapro), psilocybin was as effective as the popular SSRI (selective serotonin reuptake inhibitor) in treating moderate to severe depression. Perhaps most significantly, these results were obtained when comparing 6 weeks of daily doses of escitalopram to just two administrations of psilocybin.
Robin Carhart-Harris, head of the center who has published over 100 papers on psychedelics, is confident this study represents another step forward in applying psychedelics to mental health treatment protocols while also reducing fears a lot of citizens have around these substances. In a press release, he said:
"One of the most important aspects of this work is that people can clearly see the promise of properly delivered psilocybin therapy by viewing it compared with a more familiar, established treatment in the same study. Psilocybin performed very favorably in this head-to-head."
Credit: Robin Carhart-Harris et al, NEJM, 2021.
As depicted above, the phase 2 clinical trial included 59 volunteers. The escitalopram (control) group received six weeks of daily escitalopram in addition to two tiny (1-mg) doses of psilocybin — a dose so low that it is unlikely to produce hallucinogenic effects. The psilocybin (experimental) group received two 25-mg doses of psilocybin three weeks apart with placebo given on all the other days.
At the end of the study, both groups saw a decrease in depressive symptoms, though the results were not statistically significant. (That isn't necessarily bad because if the two drugs have similar effects, then they would not produce statistically significant results. Still, a larger study is needed to confirm that psilocybin is "just as good as" escitalopram.)
Additionally, several other outcomes favored psilocybin over escitalopram. For instance, 57 percent in the psilocybin group saw a remission of symptoms compared to 28 percent in the escitalopram group. This result was significant.
Psychedelics without tripping
As psychedelics become decriminalized and potentially legalized for therapeutic use, however, a large population of people might desire the antidepressant effects without the hallucinations. For example, the psychedelic ibogaine may be useful for treating addiction, so the company Mindmed is developing an analog that works without producing the unwanted hallucinogenic side effects.
A new research article, published in the journal PNAS, investigated the antidepressant effects of psilocybin on a group of chronically stressed mice. (Under immense stress, mice develop something resembling human depression.) As with humans, depressed mice lose a sense of joy, which can be assessed by determining their preference for sugar water over tap water. Normal mice prefer sugar water, but depressed mice simply don't care.
Once the mice were no longer juicing up on the sweetened water, the team dosed them with psilocybin alongside a drug called ketanserin, a 5-HT2A serotonin receptor antagonist that eliminates psychedelic effects. Within 24 hours of receiving the dose, the mice were rushing back to the sugar water, indicating that tripping is not necessary for psilocybin to work as an antidepressant.
While the team is excited about these results, they realize it needs to be replicated in a different population.
"The possibility of combining psychedelic compounds and a 5-HT2AR antagonist offers a potential means to increase their acceptance and clinical utility and should be studied in human depression."
Photo: Cannabis_Pic / Adobe Stock
The future of psychedelic therapy
Psychedelics such as psilocybin and LSD have a long track record of efficacy in clinical trials and anecdotal experiences. Almost all volunteers of the famous Marsh Chapel experiment claimed their experience on Good Friday in 1962 was one of the most significant events of their lives — and this was a quarter-century after the fact. A more recent, controlled study found that a single dose of psilocybin showed antidepressant effects six months later.
Proponents of macrodosing and ritualistic experiences sometimes argue that the full-blown mystical trip is the therapy, though this is anecdotal, not clinical research. As the Maryland team noted, a number of people are contraindicated for psychedelics, whether through a family history of schizophrenia or current antidepressant treatments.
Senior author Scott Thompson is excited for future research on this topic. As he said of his team's findings:
"The psychedelic experience is incredibly powerful and can be life-changing, but that could be too much for some people or not appropriate… These findings show that activation of the receptor causing the psychedelic effect isn't absolutely required for the antidepressant benefits, at least in mice."
Hopefully, with more research occurring in psychedelics than even in the 1950s (when studies predominantly relied on anecdotal evidence and little government support), the longstanding stigmatization of psychedelics is beginning to recede. This could open up new possibilities for both clinical research and, for those curious about the ritual effects, a continuation of introspective experiences.
--
Stay in touch with Derek on Twitter and Facebook. His most recent book is "Hero's Dose: The Case For Psychedelics in Ritual and Therapy."
A historian identifies the worst year in human history
A Harvard professor's study discovers the worst year to be alive.
The Triumph of Death. 1562.
- Harvard professor Michael McCormick argues the worst year to be alive was 536 AD.
- The year was terrible due to cataclysmic eruptions that blocked out the sun and the spread of the plague.
- 536 ushered in the coldest decade in thousands of years and started a century of economic devastation.
The past year has been nothing but the worst in the lives of many people around the globe. A rampaging pandemic, dangerous political instability, weather catastrophes, and a profound change in lifestyle that most have never experienced or imagined.
But was it the worst year ever?
Nope. Not even close. In the eyes of the historian and archaeologist Michael McCormick, the absolute "worst year to be alive" was 536.
Why was 536 so bad? You could certainly argue that 1918, the last year of World War I when the Spanish Flu killed up to 100 million people around the world, was a terrible year by all accounts. 1349 could also be considered on this morbid list as the year when the Black Death wiped out half of Europe, with up to 20 million dead from the plague. Most of the years of World War II could probably lay claim to the "worst year" title as well. But 536 was in a category of its own, argues the historian.
It all began with an eruption...
According to McCormick, Professor of Medieval History at Harvard University, 536 was the precursor year to one of the worst periods of human history. It featured a volcanic eruption early in the year that took place in Iceland, as established by a study of a Swiss glacier carried out by McCormick and the glaciologist Paul Mayewski from the Climate Change Institute of The University of Maine (UM) in Orono.
The ash spewed out by the volcano likely led to a fog that brought an 18-month-long stretch of daytime darkness across Europe, the Middle East, and portions of Asia. As wrote the Byzantine historian Procopius, "For the sun gave forth its light without brightness, like the moon, during the whole year." He also recounted that it looked like the sun was always in eclipse.
Cassiodorus, a Roman politician of that time, wrote that the sun had a "bluish" color, the moon had no luster, and "seasons seem to be all jumbled up together." What's even creepier, he described, "We marvel to see no shadows of our bodies at noon."
...that led to famine...
The dark days also brought a period of coldness, with summer temperatures falling by 1.5° C. to 2.5° C. This started the coldest decade in the past 2300 years, reports Science, leading to the devastation of crops and worldwide hunger.
...and the fall of an empire
In 541, the bubonic plague added considerably to the world's misery. Spreading from the Roman port of Pelusium in Egypt, the so-called Plague of Justinian caused the deaths of up to one half of the population of the eastern Roman Empire. This, in turn, sped up its eventual collapse, writes McCormick.
Between the environmental cataclysms, with massive volcanic eruptions also in 540 and 547, and the devastation brought on by the plague, Europe was in for an economic downturn for nearly all of the next century, until 640 when silver mining gave it a boost.
Was that the worst time in history?
Of course, the absolute worst time in history depends on who you were and where you lived.
Native Americans can easily point to 1520, when smallpox, brought over by the Spanish, killed millions of indigenous people. By 1600, up to 90 percent of the population of the Americas (about 55 million people) was wiped out by various European pathogens.
Like all things, the grisly title of "worst year ever" comes down to historical perspective.
Mysterious vomiting disease in dogs is due to novel coronavirus
A newly discovered coronavirus — but not the one that causes COVID-19 — has made some dogs very sick.
