Study: Unattractive people far overestimate their looks

The finding is remarkably similar to the Dunning-Kruger effect, which describes how incompetent people tend to overestimate their own competency.

smiling man
  • Recent studies asked participants to rate the attractiveness of themselves and other participants, who were strangers.
  • The studies kept yielding the same finding: unattractive people overestimate their attractiveness, while attractive people underrate their looks.
  • Why this happens is unclear, but it doesn't seem to be due to a general inability to judge attractiveness.

There's no shortage of disparities between attractive and unattractive people. Studies show that the best-looking among us tend to have an easier time making money, receiving help, avoiding punishment, and being perceived as competent. (Sure, research also suggests beautiful people have shorter relationships, but they also have more sexual partners, and more options for romantic relationships. So call it a wash.)

Now, new research reveals another disparity: Unattractive people seem less able to accurately judge their own attractiveness, and they tend to overestimate their looks. In contrast, beautiful people tend to rate themselves more accurately. If anything, they underestimate their attractiveness.

The research, published in the Scandinavian Journal of Psychology, involved six studies that asked participants to rate the attractiveness of themselves and other participants, who were strangers. The studies also asked participants to predict how others might rate them.

In the first study, lead author Tobias Greitemeyer found that the participants who were most likely to overestimate their attractiveness were among the least attractive people in the study, based on average ratings.

Ratings of subjective attractiveness as a function of the participant's objective attractiveness (Study 1)

Greitemeyer

"Overall, unattractive participants judged themselves to be of about average attractiveness and they showed very little awareness that strangers do not share this view. In contrast, attractive participants had more insights into how attractive they actually are. [...] It thus appears that unattractive people maintain illusory self‐perceptions of their attractiveness, whereas attractive people's self‐views are more grounded in reality."

Why do unattractive people overestimate their attractiveness? Could it be because they want to maintain a positive self-image, so they delude themselves? After all, previous research has shown that people tend to discredit or "forget" negative social feedback, which seems to help protect a sense of self-worth.

NBC

To find out, Greitemeyer conducted a study that aimed to put participants in a positive, non-defensive mindset before rating attractiveness. He did that by asking participants questions that affirmed parts of their personality that had nothing to do with physical appearance, such as: "Have you ever been generous and selfless to another person?" Yet, this didn't change how participants rated themselves, suggesting that unattractive people aren't overestimating their looks out of defensiveness.

The studies kept yielding the same finding: unattractive people overestimate their attractiveness. Does that bias sound familiar? If so, you might be thinking of the Dunning-Kruger effect, which describes how incompetent people tend to overestimate their own competency. Why? Because they lack the metacognitive skills needed to discern their own shortcomings.

Greitemeyer found that unattractive people were worse at differentiating between attractive and unattractive people. But the finding that unattractive people may have different beauty ideals (or, more plainly, weaker ability to judge attractiveness) did "not have an impact on how they perceive themselves."

In short, it remains a mystery exactly why unattractive people overestimate their looks. Greitemeyer concluded that, while most people are decent at judging the attractiveness of others, "it appears that those who are unattractive do not know that they are unattractive."

Unattractive people aren't completely unaware

The results of one study suggested that unattractive people aren't completely in the dark about their looks. In the study, unattractive people were shown a set of photos of highly attractive and unattractive people, and they were asked to select photos of people with comparable attractiveness. Most unattractive people chose to compare themselves with similarly unattractive people.

"The finding that unattractive participants selected unattractive stimulus persons with whom they would compare their attractiveness to suggests that they may have an inkling that they are less attractive than they want it to be," Greitemeyer wrote.

This is what aliens would 'hear' if they flew by Earth

A Mercury-bound spacecraft's noisy flyby of our home planet.

Image source: sdecoret on Shutterstock/ESA/Big Think
Surprising Science
  • There is no sound in space, but if there was, this is what it might sound like passing by Earth.
  • A spacecraft bound for Mercury recorded data while swinging around our planet, and that data was converted into sound.
  • Yes, in space no one can hear you scream, but this is still some chill stuff.

First off, let's be clear what we mean by "hear" here. (Here, here!)

Sound, as we know it, requires air. What our ears capture is actually oscillating waves of fluctuating air pressure. Cilia, fibers in our ears, respond to these fluctuations by firing off corresponding clusters of tones at different pitches to our brains. This is what we perceive as sound.

All of which is to say, sound requires air, and space is notoriously void of that. So, in terms of human-perceivable sound, it's silent out there. Nonetheless, there can be cyclical events in space — such as oscillating values in streams of captured data — that can be mapped to pitches, and thus made audible.

BepiColombo

Image source: European Space Agency

The European Space Agency's BepiColombo spacecraft took off from Kourou, French Guyana on October 20, 2019, on its way to Mercury. To reduce its speed for the proper trajectory to Mercury, BepiColombo executed a "gravity-assist flyby," slinging itself around the Earth before leaving home. Over the course of its 34-minute flyby, its two data recorders captured five data sets that Italy's National Institute for Astrophysics (INAF) enhanced and converted into sound waves.

Into and out of Earth's shadow

In April, BepiColombo began its closest approach to Earth, ranging from 256,393 kilometers (159,315 miles) to 129,488 kilometers (80,460 miles) away. The audio above starts as BepiColombo begins to sneak into the Earth's shadow facing away from the sun.

The data was captured by BepiColombo's Italian Spring Accelerometer (ISA) instrument. Says Carmelo Magnafico of the ISA team, "When the spacecraft enters the shadow and the force of the Sun disappears, we can hear a slight vibration. The solar panels, previously flexed by the Sun, then find a new balance. Upon exiting the shadow, we can hear the effect again."

In addition to making for some cool sounds, the phenomenon allowed the ISA team to confirm just how sensitive their instrument is. "This is an extraordinary situation," says Carmelo. "Since we started the cruise, we have only been in direct sunshine, so we did not have the possibility to check effectively whether our instrument is measuring the variations of the force of the sunlight."

When the craft arrives at Mercury, the ISA will be tasked with studying the planets gravity.

Magentosphere melody

The second clip is derived from data captured by BepiColombo's MPO-MAG magnetometer, AKA MERMAG, as the craft traveled through Earth's magnetosphere, the area surrounding the planet that's determined by the its magnetic field.

BepiColombo eventually entered the hellish mangentosheath, the region battered by cosmic plasma from the sun before the craft passed into the relatively peaceful magentopause that marks the transition between the magnetosphere and Earth's own magnetic field.

MERMAG will map Mercury's magnetosphere, as well as the magnetic state of the planet's interior. As a secondary objective, it will assess the interaction of the solar wind, Mercury's magnetic field, and the planet, analyzing the dynamics of the magnetosphere and its interaction with Mercury.

Recording session over, BepiColombo is now slipping through space silently with its arrival at Mercury planned for 2025.

Learn the Netflix model of high-performing teams

Erin Meyer explains the keeper test and how it can make or break a team.

Videos
  • There are numerous strategies for building and maintaining a high-performing team, but unfortunately they are not plug-and-play. What works for some companies will not necessarily work for others. Erin Meyer, co-author of No Rules Rules: Netflix and the Culture of Reinvention, shares one alternative employed by one of the largest tech and media services companies in the world.
  • Instead of the 'Rank and Yank' method once used by GE, Meyer explains how Netflix managers use the 'keeper test' to determine if employees are crucial pieces of the larger team and are worth fighting to keep.
  • "An individual performance problem is a systemic problem that impacts the entire team," she says. This is a valuable lesson that could determine whether the team fails or whether an organization advances to the next level.
Keep reading Show less
Photo by Martin Adams on Unsplash
Culture & Religion
She was walking down the forest path with a roll of white cloth in her hands. It was trailing behind her like a long veil.
Keep reading Show less
Scroll down to load more…
Quantcast