What is Big Think?  

We are Big Idea Hunters…

We live in a time of information abundance, which far too many of us see as information overload. With the sum total of human knowledge, past and present, at our fingertips, we’re faced with a crisis of attention: which ideas should we engage with, and why? Big Think is an evolving roadmap to the best thinking on the planet — the ideas that can help you think flexibly and act decisively in a multivariate world.

A word about Big Ideas and Themes — The architecture of Big Think

Big ideas are lenses for envisioning the future. Every article and video on bigthink.com and on our learning platforms is based on an emerging “big idea” that is significant, widely relevant, and actionable. We’re sifting the noise for the questions and insights that have the power to change all of our lives, for decades to come. For example, reverse-engineering is a big idea in that the concept is increasingly useful across multiple disciplines, from education to nanotechnology.

Themes are the seven broad umbrellas under which we organize the hundreds of big ideas that populate Big Think. They include New World Order, Earth and Beyond, 21st Century Living, Going Mental, Extreme Biology, Power and Influence, and Inventing the Future.

Big Think Features:

12,000+ Expert Videos

1

Browse videos featuring experts across a wide range of disciplines, from personal health to business leadership to neuroscience.

Watch videos

World Renowned Bloggers

2

Big Think’s contributors offer expert analysis of the big ideas behind the news.

Go to blogs

Big Think Edge

3

Big Think’s Edge learning platform for career mentorship and professional development provides engaging and actionable courses delivered by the people who are shaping our future.

Find out more
Close

Geometries of the Universe: The Math of Knowledge Advancement

February 20, 2013, 12:00 AM
Universe2

This post, by Tom Hartsfield, was originally published in RealClear Science's Newton blog. You can read the original here

Back in 8th grade, I hated math. Everyone hated math. Maybe the kid who kept their calculator (or slide rule, for you vintage readers) in a case didn't hate math. That kid probably became an engineer. Or a physicist. (Confession: I was later the kid with the fancy calculator.) Our rallying cry as math-haters was, "When are we ever going to use this?!" Here's a wise answer: two basic forms of geometry, learned before high school, are used in almost every engineering project and every physics discovery that has ever been made.

Euclidean Geometry

Greek mathematicians, notably Euclid and Pythagoras (of middle school algebra infamy), laid out the first geometry of the world. They thought of things in terms of shapes made of lines and curves. Their most important discovery was a way to tell how far apart things are:

Take any two places (A and B) and draw a line through each place such that the lines meet (C) at a 90 degree angle. The distance from A to B, squared, is always equal to the distance B-C squared plus the distance from C back to A, squared. (This is the infamous Pythagorean theorem.) This language is perfectly accurate for flat, still surfaces. Notice however, that it only deals in distances between things, not their absolute position. Euclid says "B is five miles north of A" not "B is at 2 Water Lane, Woolsthorpe".

Cartesian Geometry

Descartes wanted a way to make the points A, B and C refer to absolute things so that anyone anywhere can perform the same measurements. Latin, Chinese, Hebrew and English are all languages of words to catalog or refer to concepts. They are phone books that assign words to ideas. Similarly, the math of Descartes is a phone book, but to assign numbers to places in space. This is called Cartesian geometry. In this language, the Pythagorean Theorem is written like this:

Pythagoras Descartes.png

Where A, B and C are all coordinate numbers, like (0,0) or (-3,5) that you stick into the formula. Euclid would have made you draw lines and geometric shapes and connect them all with theorems!

Descartes's world is an enormous ream of numbered graph paper. You start with zero somewhere, and then you follow perpendicular lines in all directions. Euclid's relative distances are replaced by numbers that tell you where you start and where you end and where you are everywhere in between, relative to the entire world. This mathematical machinery is valid for most experiences in day to day life.

Lorentzian Geometry:

Centuries later, Einstein came along and changed everything. His conclusion that the speed of light is constant, and his fitting of experiments to theory demanded a new geometry. In this geometry, objects always move at the speed of light through four-dimensional space-time. The math was invented by Hendrik Lorentz, a brilliant mathematician and physicist of the late 19th century. Lorentzian geometry is much harder to explain, but you can think of the graph paper of Descartes as actually distorted, or squished, like a cardboard carton being smashed:

Lorentz Transformed Coords.gif

Cartesian geometry is the black perpendicular lines; Lorentz geometry is the green and red lines. (Source: IEP)

Second, distance rules change a bit, so you have to modify the Pythagorean theorem:

Pythagoras Lorentz.png

Where x,y,z,t are the distances you've moved in space (x,y,z) and time (t) and c is the speed of light.

Curved spacetime geometry:

After Einstein revolutionized the geometry by which we measure the universe in 1905, he did it again in 1916, when he completed the theory of general relativity. General relativity is so difficult and so complex, that we only know of a few correct answers to its equations. Luckily, however, Einstein realized that the curved universe looks flat if you look at a small enough area of it. This is just like how the earth appears flat to us, standing upon it. Physicists thus work in Lorentz geometry most of the time, and then use the difficult curved geometry to translate between one almost flat "Lorentzian" place and another.

Four increasingly sophisticated geometrical descriptions of the universe, as created by three millennia of human minds. How much deeper will the rabbit hole go?

~

Note: phone book analogy borrowed from "The Phone Book": Misner Thorne & Wheeler's Gravitation, a book on general relativity with the authority and heft of a phone book but far greater beauty.

More from the Big Idea for Wednesday, February 20 2013

Deep Learning

A fundamental aspect of deep learning is the ability to apply skills to the real world. There is deep risk, therefore, in teaching subjects like math without demonstrating its relevancy to our own... Read More…

 

Geometries of the Universe:...

Newsletter: Share: