What is Big Think?  

We are Big Idea Hunters…

We live in a time of information abundance, which far too many of us see as information overload. With the sum total of human knowledge, past and present, at our fingertips, we’re faced with a crisis of attention: which ideas should we engage with, and why? Big Think is an evolving roadmap to the best thinking on the planet — the ideas that can help you think flexibly and act decisively in a multivariate world.

A word about Big Ideas and Themes — The architecture of Big Think

Big ideas are lenses for envisioning the future. Every article and video on bigthink.com and on our learning platforms is based on an emerging “big idea” that is significant, widely relevant, and actionable. We’re sifting the noise for the questions and insights that have the power to change all of our lives, for decades to come. For example, reverse-engineering is a big idea in that the concept is increasingly useful across multiple disciplines, from education to nanotechnology.

Themes are the seven broad umbrellas under which we organize the hundreds of big ideas that populate Big Think. They include New World Order, Earth and Beyond, 21st Century Living, Going Mental, Extreme Biology, Power and Influence, and Inventing the Future.

Big Think Features:

12,000+ Expert Videos

1

Browse videos featuring experts across a wide range of disciplines, from personal health to business leadership to neuroscience.

Watch videos

World Renowned Bloggers

2

Big Think’s contributors offer expert analysis of the big ideas behind the news.

Go to blogs

Big Think Edge

3

Big Think’s Edge learning platform for career mentorship and professional development provides engaging and actionable courses delivered by the people who are shaping our future.

Find out more
Close

Eruptions Word of the Day: Tuya

July 12, 2010, 2:04 AM

The latest Eruptions Word of the Day is "Tuya".

So, what is a tuya?

This is a tuya:

CentORCascadesArrow.jpg
A tuya! Click on the image to see a larger version. Image by Erik Klemetti.

Alright, well, that doesn't entirely help, does it?

Lets look at the feature the arrow indicates. Some observations:

(1) It is low and broad.
(2) It has a relatively flat top.
(3) It is steep-sided.
(4) If you look real close, you can see crudely columnar jointing in the some of the outcrops near the top.
(5) If you had a piece of it in your hand, you'd know it was a volcano rock (andesite, very rarely you can find bits that are quite glassy).
(6)(And right next door to this feature is a reddish cone that is obviously a cinder/scoria cone.

So, what is it? How can you construct a flat-topped volcanic landforms with features that indicate a strong cooling gradient (columnar jointing, glassy material) when right next door is lava erupting to form a cinder cone?

Easy! Ice! And lots of it.

A tuya is a subglacial volcanic landform formed when there are eruptions that cannot penetrate the ice sheet above, thus forming a flat-topped hill that conforms to the bottom of the ice (after some has melted away of course). This tuya in question is found in the Central Oregon Cascades - Hayrick Butte - and it is one of a few tuya found in the High Casacades of Oregon. Much of the evidence of its subglacial origin has been removed by other erosional glacial processes, but there are still places where you can convince yourself that the columnar jointed formed by lava meeting ice are still present. The steep sides formed because the lava erupted couldn't flow far due to the ice surrounding it. Ice-contact eruptions can form quite impressive glassy pillows - the image below is a ice-contact pillow I collected from North Sister in Oregon and the groundmass of the lava is a shiny, dark grey glass on the outer edges but much stonier in the interior, away from the direct contact with the ice. You can also find evidence for subglacial or at least ice-melt influenced explosive volcanism in the Central Oregon Cascades - this takes the form of highly altered tuff deposits on North Sister.

NSpillow.jpg
Ice-contact pillow collected from North Sister volcano, Oregon. Note the dark, glassy (and puffy) rind with a grey/red stony interior. The glassiness is formed by direct contact of the lava with ice. Click on the image to see a larger version. Image by Erik Klemetti.

Hayrick Butte likely formed during the height of the last ice age during the Pliocene, while the nearby Hoodoo Butte (the scoria cone) was not formed subglacially, thus its more typical cone-shaped profile. So, maybe a few thousand years separated these two volcanoes, but they ended up with very different surface expressions controlled by whether they erupted into air or underneath a kilometer-thick ice sheet. This tuya is also great evidence that there was once an ice sheet over the Central Oregon Cascades (at least locally) where today few glaciers remain.

 

Eruptions Word of the Day: ...

Newsletter: Share: