What is Big Think?  

We are Big Idea Hunters…

We live in a time of information abundance, which far too many of us see as information overload. With the sum total of human knowledge, past and present, at our fingertips, we’re faced with a crisis of attention: which ideas should we engage with, and why? Big Think is an evolving roadmap to the best thinking on the planet — the ideas that can help you think flexibly and act decisively in a multivariate world.

A word about Big Ideas and Themes — The architecture of Big Think

Big ideas are lenses for envisioning the future. Every article and video on bigthink.com and on our learning platforms is based on an emerging “big idea” that is significant, widely relevant, and actionable. We’re sifting the noise for the questions and insights that have the power to change all of our lives, for decades to come. For example, reverse-engineering is a big idea in that the concept is increasingly useful across multiple disciplines, from education to nanotechnology.

Themes are the seven broad umbrellas under which we organize the hundreds of big ideas that populate Big Think. They include New World Order, Earth and Beyond, 21st Century Living, Going Mental, Extreme Biology, Power and Influence, and Inventing the Future.

Big Think Features:

12,000+ Expert Videos

1

Browse videos featuring experts across a wide range of disciplines, from personal health to business leadership to neuroscience.

Watch videos

World Renowned Bloggers

2

Big Think’s contributors offer expert analysis of the big ideas behind the news.

Go to blogs

Big Think Edge

3

Big Think’s Edge learning platform for career mentorship and professional development provides engaging and actionable courses delivered by the people who are shaping our future.

Find out more
Close

Harvard Scientists Claim to Reverse Aging in Mice

December 3, 2010, 1:15 PM
Mice_fountain_of_youth_michio_kaku

While we still haven't quite discovered the fabled Fountain of Youth, a major breakthrough was recently made toward the goal of eternal life. Scientists at Harvard Medical School have discovered that the enzyme telomerase seems to reverse aging in mice.

Inside every cell is a "biological clock"—every time a cell divides, the chromosomes containing our DNA get shorter. At the ends of each chromosome are the telomeres, which are like the tips of our shoelaces, signaling the end of the line. Skin cells, for example, divide about 60 times over their course of their lifespan. When the telomeres become too short after 60 divisions, then the chromosome stops acting properly and eventually dies. This is called the Hayflick limit. So they are, in some sense, programmed to die.

However, if we apply the enzyme telomerase to these aging cells, the cell repairs the damage to the telomeres. In a petri dish, scientists previously showed that human skin cells, when exposed to telomerase, become immortal—they can divide thousands of times, breaking the Hayflick limit. Although the immortalization of human skin cells seems remarkable, we should note that cancer cells are also immortal (and, in fact, that is the reason why they eventually kill us). Cancer cells also use telomerase to repair damage to their telomeres, thereby overcoming the Hayflick limit.

At Harvard, scientists created a strain of mice which did not produce very much telomerase. As expected, these mice suffered from a series of problems associated with aging, such as damage to their internal organs, shrinking of brain tissue, loss of vigor, et cetera. But these scientists then discovered that by injecting an agent which stimulated the production of telomerase, they could re-invigorate these aging mice. The effects of age seem to be reversed, which is a truly sensational result.

But what does this mean for human aging? In the short term, not much; there are many hurdles that still must be overcome. As mentioned, telomerase can stimulate cancer, and hence has to be monitored very carefully. Second, spectacular results that are demonstrated in mice often do not translate to humans. Third, this result has yet to be duplicated by other research groups. And finally, the FDA will certainly demand rigorous and lengthy testing before any commercialization of this technology is possible. So the result is remarkable, but its human impact will remain unclear for years to come.

In the meantime, scientists are investigating other approaches to counteracting the effects of aging, including:

a) Caloric Restriction: By reducing normal food intake by 30%, the life span of most animals can be extended by 30%. (Although this invariably works on animals, it has not been proven to work on humans).

b) Resveratrol and Anti-Oxidants: Certain chemicals seems to reverse the damage caused by oxidation, which causes us to age.

c) Genetic Research: Genes such as SIR2, AGE-!, AGE-2, and a host of other genes have been shown to influence the aging process.

d) Bioinformatics: By analyzing millions of genomes from the elderly and comparing them with the genomes of young people, one might be able to isolate precisely where aging takes place in our cells.

e) Mitochondria: Aging in a car takes place mainly in the engine. Similarly, aging in the cell takes place in its "engine," the mitochondria. 

Contrary to the ads we constantly see in drug stores, we can't currently reverse the aging process. But real, testable, falsifiable results are now coming out of laboratories, so it's a good bet that we might be able to stop and perhaps reverse some aspects of aging in the future.

 

Harvard Scientists Claim to...

Newsletter: Share: