The Intellectual Dark Web

You might say members of the Intellectual Dark Web don't fit in. They might say, "exactly."


Improve your life: Quit hating inequality and hierarchy.

Why the radical Left may end up killing what it loves

Capitalism is in trouble. Socialist principles can save it.

A short history of knowledge from feudalism to the internet

Religions are literally false but metaphorically true 

Why libertarianism will never be a universal value

How to detect baloney Carl Sagan style

Islamic extremism is the Voldemort of our time — that's a problem

More playlists
  • Bristle worms are odd-looking, spiky, segmented worms with super-strong jaws.
  • Researchers have discovered that the jaws contain metal.
  • It appears that biological processes could one day be used to manufacture metals.

The bristle worm, also known as polychaetes, has been around for an estimated 500 million years. Scientists believe that the super-resilient species has survived five mass extinctions, and there are some 10,000 species of them.

Be glad if you haven't encountered a bristle worm. Getting stung by one is an extremely itchy affair, as people who own saltwater aquariums can tell you after they've accidentally touched a bristle worm that hitchhiked into a tank aboard a live rock.

Bristle worms are typically one to six inches long when found in a tank, but capable of growing up to 24 inches long. All polychaetes have a segmented body, with each segment possessing a pair of legs, or parapodia, with tiny bristles. ("Polychaeate" is Greek for "much hair.") The parapodia and its bristles can shoot outward to snag prey, which is then transferred to a bristle worm's eversible mouth.

The jaws of one bristle worm — Platynereis dumerilii — are super-tough, virtually unbreakable. It turns out, according to a new study from researchers at the Technical University of Vienna, this strength is due to metal atoms.

Metals, not minerals

Fireworm, a type of bristle wormCredit: prilfish / Flickr

This is pretty unusual. The study's senior author Christian Hellmich explains: "The materials that vertebrates are made of are well researched. Bones, for example, are very hierarchically structured: There are organic and mineral parts, tiny structures are combined to form larger structures, which in turn form even larger structures."

The bristle worm jaw, by contrast, replaces the minerals from which other creatures' bones are built with atoms of magnesium and zinc arranged in a super-strong structure. It's this structure that is key. "On its own," he says, "the fact that there are metal atoms in the bristle worm jaw does not explain its excellent material properties."

Just deformable enough


Credit: by-studio / Adobe Stock

What makes conventional metal so strong is not just its atoms but the interactions between the atoms and the ways in which they slide against each other. The sliding allows for a small amount of elastoplastic deformation when pressure is applied, endowing metals with just enough malleability not to break, crack, or shatter.

Co-author Florian Raible of Max Perutz Labs surmises, "The construction principle that has made bristle worm jaws so successful apparently originated about 500 million years ago."

Raible explains, "The metal ions are incorporated directly into the protein chains and then ensure that different protein chains are held together." This leads to the creation of three-dimensional shapes the bristle worm can pack together into a structure that's just malleable enough to withstand a significant amount of force.

"It is precisely this combination," says the study's lead author Luis Zelaya-Lainez, "of high strength and deformability that is normally characteristic of metals.

So the bristle worm jaw is both metal-like and yet not. As Zelaya-Lainez puts it, "Here we are dealing with a completely different material, but interestingly, the metal atoms still provide strength and deformability there, just like in a piece of metal."

Observing the creation of a metal-like material from biological processes is a bit of a surprise and may suggest new approaches to materials development. "Biology could serve as inspiration here," says Hellmich, "for completely new kinds of materials. Perhaps it is even possible to produce high-performance materials in a biological way — much more efficiently and environmentally friendly than we manage today."

  • Anchoring is a common bias that makes people fixate on one piece of data.
  • A study showed that those who experienced rudeness were more likely to anchor themselves to bad data.
  • In some simulations with medical students, this effect led to higher mortality rates.

Cognitive biases are funny little things. Everyone has them, nobody likes to admit it, and they can range from minor to severe depending on the situation. Biases can be influenced by factors as subtle as our mood or various personality traits.

A new study soon to be published in the Journal of Applied Psychology suggests that experiencing rudeness can be added to the list. More disturbingly, the study's findings suggest that it is a strong enough effect to impact how medical professionals diagnose patients.

Life hack: don't be rude to your doctor

The team of researchers behind the project tested to see if participants could be influenced by the common anchoring bias, defined by the researchers as "the tendency to rely too heavily or fixate on one piece of information when making judgments and decisions." Most people have experienced it. One of its more common forms involves being given a particular value, say in negotiations on price, which then becomes the center of reasoning even when reason would suggest that number should be ignored.

It can also pop up in medicine. As co-author Dr. Trevor Foulk explains, "If you go into the doctor and say 'I think I'm having a heart attack,' that can become an anchor and the doctor may get fixated on that diagnosis, even if you're just having indigestion. If doctors don't move off anchors enough, they'll start treating the wrong thing."

Lots of things can make somebody more or less likely to anchor themselves to an idea. The authors of the study, who have several papers on the effects of rudeness, decided to see if that could also cause people to stumble into cognitive errors. Past research suggested that exposure to rudeness can limit people's perspective — perhaps anchoring them.

In the first version of the study, medical students were given a hypothetical patient to treat and access to information on their condition alongside an (incorrect) suggestion on what the condition was. This served as the anchor. In some versions of the tests, the students overheard two doctors arguing rudely before diagnosing the patient. Later variations switched the diagnosis test for business negotiations or workplace tasks while maintaining the exposure to rudeness.

Across all iterations of the test, those exposed to rudeness were more likely to anchor themselves to the initial, incorrect suggestion despite the availability of evidence against it. This was less significant for study participants who scored higher on a test of how wide of a perspective they tended to have. The disposition of these participants, who answered in the affirmative to questions like, "Before criticizing somebody, I try to imagine how I would feel if I were in his/her place," was able to effectively negate the narrowing effects of rudeness.

What this means for you and your healthcare

The effects of anchoring when a medical diagnosis is on the line can be substantial. Dr. Foulk explains that, in some simulations, exposure to rudeness can raise the mortality rate as doctors fixate on the wrong problems.

The authors of the study suggest that managers take a keener interest in ensuring civility in workplaces and giving employees the tools they need to avoid judgment errors after dealing with rudeness. These steps could help prevent anchoring.

Also, you might consider being nicer to people.

  • Here's one pandemic project we approve of: a map of the United Fonts of America.
  • The question was simple: How many fonts are named after places in the U.S.?
  • Finding them became an obsession for Andy Murdock. At 222, he stopped looking.

The Neon Museum (a.k.a. Neon Boneyard) in downtown Las Vegas, a monument to the siren call of typography. Credit: Dale Cruse, CC BY 2.0

Who isn't fond of fonts? Even if we don't know their names, we associate specific letter types with certain brands, feelings, and levels of trust.

Typography equals psychology. For example, you don't want to get a message from your doctor, or anybody else in authority, that's set in comic sans — basically, the typeface that wears clown makeup.

A new serif in town

If you want to convey reliability, tradition, and formality, you should go for a serif, a font with decorative bits stuck to its extremities. Well-known examples include Garamond, Baskerville, and Times New Roman. Remove the decoration, and you've got a clean look that communicates clarity, modernity, and innovation. Arial and Helvetica are some of the most popular sans serif fonts.

There's a lot more to font psychology, but let's veer toward another, less explored Venn diagram instead: the overlap between typography and geography. That's where Andy Murdock spent much of his pandemic.

Mr. Murdock is the co-founder of The Statesider, a newsletter about (among other things) travel and landscape in the United States. He remembers his first encounter with a home computer back in 1984 and learning from that Macintosh both the word "font" and the name for the one it used: Chicago.

A map of the United Fonts of America — well, 222 of them.Credit: The Statesider, reproduced with kind permission.

You can see where this is going. Mr Murdock retained a healthy interest in fonts named after places. Over the years, he noted Monaco, London, San Francisco, and Cairo, among many others. "And then, the question of how many fonts are named for U.S. places came up in an editorial meeting at The Statesider," Mr Murdock says.

It's the sort of topic that in other times might never have gone anywhere, but this was the start of the pandemic. "I was stuck for days on end, so I actually started looking into it. At some point, I realized that I could probably find at least one per state." Cue the idea for a map of the "United Fonts of America."

Challenge turns into obsession

But that was easier said than done. Finding location-based fonts turned out to be rather time-consuming. "I definitely didn't realize what I was getting myself into," Mr Murdock recalls. "I could quickly name a few — New York, Georgia, Chicago — but I had no idea that I'd be able to find so many."

What started as a quirky challenge turned into an obsession and a compulsion that would have the accidental font-mapper wake up in the middle of the night and think: Did I check to see if there's a Boise font? (He did; there isn't.)

"The hardest part was knowing when to stop," said Mr Murdock. "Believe me, I know I missed some." In all, he found 222 fonts referencing places in the United States and its territories.

Beautiful but fontless: Boise, Idaho.Credit: Jyoni Shuler, CC BY-SA 4.0

For the most part, these fonts are distributed as the population is: heavy on the coasts and near the Great Lakes, but thin in most parts in between. California (23 fonts) takes the cake, followed by Texas (15), and New York (9).

Some of the fonts have interesting back stories, and in his article for "The Statesider", Mr Murdock provides a few:

  • Georgia was named after a newspaper headline reading "Alien Heads Found in Georgia."
  • Fayette is based on the handwriting of the record-keeper of a place called Fayette, now a ghost town in Michigan's Upper Peninsula.
  • Tahoma and Tacoma are both pre-European names for Mount Rainier in Washington state.

Mostly, the fonts repeat the names of states and cities, but some offer something more interesting, such as the alliterating Cascadia Code or the lyrical Tallahassee Chassis. Other less than ordinary names include Kentuckyfried and Wyoming Spaghetti.

Capturing the spirit of a place

As an unexpected expert in the geographic distribution of location-based fonts, can Mr. Murdock offer any opinion on the qualitative relation between place and typeface?

"Good design of any sort can capture the spirit of a place, or at least one perspective on a place," he says, "but frankly, that only occasionally seems to have been the goal when it comes to typefaces."

In his opinion, the worst fonts reflect a stereotype about a place, rather than the place itself: "Saipan and Hanalei are both made to look like crude bamboo. Those are particularly awful. Pecos feels like it belongs on a bad Tex-Mex restaurant's menu."

California (lower left) is a rich source of location-based typefaces.Credit: The Statesider, reproduced with kind permission.

"Santa Barbara Streets, on the other hand, is quite nice because it captures the font that's actually used on street signs in Santa Barbara. I prefer the typefaces that have a story and a connection to a place, but it's a fine line between being artfully historic and being cartoonishly retro."

Let's finish off Route 66

Glancing over the map, some regions seem more prone to "stereotypefacing" than others: "Tucson, Tombstone, El Paso — you know you're in the Southwest. Art Deco fonts are mostly in the east or around the Great Lakes. In general, you find more sans serif fonts in the western U.S., and more serif fonts in the east, but that's not a hard-and-fast rule."

Noticing a few blank spots on the map, Mr. Murdock helpfully suggests some areas that could do with a few more fonts, including the Carolinas, the Dakotas, Maine, Missouri, West Virginia, New Jersey, and Rhode Island.

Oh, and Route 66. Nearly all of the cities mentioned in the eponymous song have a typeface named after them. "We need Gallup and Barstow to complete the set."

And finally, America's oft-overlooked overseas territories could be a rich seam for type developers: "Some of these names are perfect for a great typeface — Viejo San Juan, St. Croix, Pago Pago, Ypao Beach, Tinian."

To name but a few. Typeface designers, sharpen your pencils!

Map found here at The Statesider, reproduced with kind permission. For more dispatches from the weird interzone between geography and typography, check out Strange Maps #318: The semicolonial state of San Serriffe.

Strange Maps #1090

Got a strange map? Let me know at strangemaps@gmail.com.

Follow Strange Maps on Twitter and Facebook.

The distances between the stars are so vast that they can make your brain melt. Take for example the Voyager 1 probe, which has been traveling at 35,000 miles per hour for more than 40 years and was the first human object to cross into interstellar space. That sounds wonderful except, at its current speed, it will still take another 40,000 years to cross the typical distance between stars.

Worse still, if you are thinking about interstellar travel, nature provides a hard limit on acceleration and speed. As Einstein showed, it's impossible to accelerate any massive object beyond the speed of light. Since the galaxy is more than 100,000 light-years across, if you are traveling at less than light speed, then most interstellar distances would take more than a human lifetime to cross. If the known laws of physics hold, then it seems a galaxy-spanning human civilization is impossible.

Unless of course you can build a warp drive.


Warp speed!

Ah, the warp drive, that darling of science fiction plot devices. So, what about a warp drive? Is that even a really a thing?

Let's start with the "warping" part of a warp drive. Without doubt, Albert Einstein's theory of general relativity ("GR") represents space and time as a 4-dimensional "fabric" that can be stretched and bent and folded. Gravity waves, representing ripples in the fabric of spacetime, have now been directly observed. So, yes spacetime can be warped. The warping part of a warp drive usually means distorting the shape of spacetime so that two distant locations can be brought close together — and you somehow "jump" between them.

This was a basic idea in science fiction long before Star Trek popularized the name "warp drive." But until 1994, it had remained science fiction, meaning there was no science behind it. That year, Miguel Alcubierre wrote down a solution to the basic equations of GR that represented a region that compressed spacetime ahead of it and expanded spacetime behind to create a kind of traveling warp bubble. This was really good news for warp drive fans.

The problems with a warp drive

There were some problems though. Most important was that this "Alcubierre drive" required lots of "exotic matter" or "negative energy" to work. Unfortunately, there's no such thing. These are things theorists dreamed up to stick into the GR equations in order to do cool things like make stable open wormholes or functioning warp drives.

It's also noteworthy that researchers have raised other concerns about an Alcubierre drive — like how it would violate quantum mechanics or how when you arrived at your destination it would destroy everything in front of the ship in an apocalyptic flash of radiation.

Warp drives: A new hope

Credit: Primada / 420366373 via Adobe Stock

Recently, however, there seemed to be good news on the warp drive front with the publication this April of a new paper by Alexey Bobrick and Gianni Martre entitled "Introducing Physical Warp Drives." The good thing about the Bobrick and Martre paper was it was extremely clear about the meaning of a warp drive.

Understanding the equations of GR means understanding what's on either side of the equals sign. On one side, there is the shape of spacetime, and on the other, there is the configuration of matter-energy. The traditional route with these equations is to start with a configuration of matter-energy and see what shape of spacetime it produces. But you can also go the other way around and assume the shape of spacetime you want (like a warp bubble) and determine what kind of configuration of matter-energy you will need (even if that matter-energy is the dream stuff of negative energy).

Warp drives are simpler and much less mysterious objects than the broader literature has suggested.

What Bobrick and Martre did was step back and look at the problem more generally. They showed how all warp drives were composed of three regions: an interior spacetime called the passenger space; a shell of material, with either positive or negative energy, called the warping region; and an outside that, far enough away, looks like normal unwarped spacetime. In this way they could see exactly what was and was not possible for any kind of warp drive. (Watch this lovely explainer by Sabine Hossenfelder for more details). They even showed that you could use good old normal matter to create a warp drive that, while it moved slower than light speed, produced a passenger area where time flowed at a different rate than in the outside spacetime. So even though it was a sub-light speed device, it was still an actual warp drive that could use normal matter.

That was the good news.

The bad news was this clear vision also showed them a real problem with the "drive" part of the Alcubierre drive. First of all, it still needed negative energy to work, so that bummer remains. But worse, Bobrick and Martre reaffirmed a basic understanding of relativity and saw that there was no way to accelerate an Alcubierre drive past light speed. Sure, you could just assume that you started with something moving faster than light, and the Alcubierre drive with its negative energy shell would make sense. But crossing the speed of light barrier was still prohibited.

So, in the end, the Star Trek version of the warp drive is still not a thing. I know this may bum you out if you were hoping to build that version of the Enterprise sometime soon (as I was). But don't be too despondent. The Bobrick and Martre paper really did make headway. As the authors put it in the end:

"One of the main conclusions of our study is that warp drives are simpler and much less mysterious objects than the broader literature has suggested"

That really is progress.

  • In a unique study, researchers have determined how many people in medieval England had bunions
  • A fashion trend towards pointed toe shoes made the affliction common.
  • Even monks got in on the trend, much to their discomfort later in life.

Late Medieval England had its share of problems. The Wars of Roses raged, the Black Death killed off large parts of the population, and passing ruffians could say "Ni" at will to old ladies.

To make matters worse, a first of its kind study published in the International Journal of Paleopathology has demonstrated that much of the population suffered from another plague — a plague of bunions likely caused by a ridiculous medieval fashion trend.

If the shoe fits, it won't cause bunions


The outlines of a leather shoe from the King's Ditch, Cambridge. It is easy to see how these shoes might be constricting. Copyright Cambridge Archaeological Unit.


The bunion, known to medicine as "hallux valgus," is a deformity of the joint connecting the big toe to the rest of the foot. It is painful and can cause other issues including poor balance. The condition is associated with having worn constrictive shoes for a long period of time as well as genetic factors. Today, it is often caused by wearing high heeled shoes.

The medieval English didn't care for high heeled shoes as much as modern fashionistas, but there was a major fashion trend toward shoes with long, pointed toes called "poulaines" or "crakows" for their supposed place of origin, Krakow, Poland.

This trend, already silly-looking to a modern observer, got out of hand in a hurry. According to some records, the points on nobleman's shoes could be so long as to require tying them to the leg with string so the wearer could walk. At one point, King Edward IV had to ban commoners from wearing points longer than two inches. A couple years later, he saw fit to ban the shoes altogether.

But, just knowing that people back in the day made poor fashion choices doesn't prove they suffered for it. That is where digging up old skeletons to look at their feet comes in.

Beauty is pain: the price of high medieval fashion

To learn how bad the bunion epidemic was, the researchers looked to four burial sites in and around Cambridge. One was a rural cemetery where poor peasants were buried. Another was the All Saints by the Castle parish, which had a mixed collection of people that tended toward poverty. The Hospital of St. John's burial ground contained both the poor charges of a charity hospital and wealthy benefactors. Lastly, they considered the cemetery of a local Augustinian friary, home to monks and well-to-do philanthropists.

The team considered 177 adult skeletons that were at least a quarter complete and still had enough of their feet to make studying them possible. The remains were classified by age and sex by observation and DNA testing. Each was examined for evidence of bunions and signs of complications from the condition, such as falling.

Those buried in the monastery's graveyard were the most affected. Nearly half, 43 percent, of the remains found there had bunions. This includes five of the eleven members of the clergy they found. Twenty-three percent of those laid to rest at the Hospital of St. John had bunions, though only 10 percent of those at the All Saints by the Castle parish graveyard did.

The rural cemetery had a much lower rate of instances, only three percent, suggesting that these peasants were able to avoid at least one plague.

Overall, eighteen percent of the individuals examined had bunions, with men more likely to have them than women. Those at cemeteries known for exclusivity were more likely to have them as well, though it is clear that the condition also affected members of other classes. This makes sense, as it is known that these shoes had mass appeal.

The authors note that the rural cemetery having fewer cases is partly because that cemetery "went out of use prior to the wide adoption of pointed shoes, and it is likely that those residing in the parish predominately wore soft leather shoes, or possibly went barefoot."

Those skeletons with evidence of bunions were more likely to have fractures indicative of a fall. This was more common on those estimated or recorded as having lived past age 45.

In our much more enlightened times, 23 percent of the population currently endures having bunions, most of them women, and one of the leading culprits behind this is the high heeled shoe.

Some things never change.