What proof is there that the universe is evolving?
Stargazing is a form of time travel.
Dr. Michelle Thaller is an astronomer who studies binary stars and the life cycles of stars. She is Assistant Director of Science Communication at NASA. She went to college at Harvard University, completed a post-doctoral research fellowship at the California Institute of Technology (Caltech) in Pasadena, Calif. then started working for the Jet Propulsion Laboratory's (JPL) Spitzer Space Telescope. After a hugely successful mission, she moved on to NASA's Goddard Space Flight Center (GSFC), in the Washington D.C. area. In her off-hours often puts on about 30lbs of Elizabethan garb and performs intricate Renaissance dances. For more information, visit NASA.
MICHELLE THALLER: One of my absolute favorite things about being an astronomer is we are actually time travelers-- real time travelers. We work all the time with looking back into the history of the universe. And there's a wonderfully simple reason why. And that's that light only has a finite speed. As fast as light speed is-- light goes at 186,000 miles per second. That's incredible. But as fast as that speed is, when you think about how large the universe is, light takes time, a lot of time, to actually get to us from distant objects. So let's start off with the nearest star. It's kind of the simple way to begin.
So the sun is about 93 million miles away. And at 186,000 miles per second, it takes about eight minutes for light to actually get to us from the sun. So when you stand on the surface of the Earth today and look up at the sun-- with eye protection-- you're actually seeing the sun as it was eight minutes ago. There's no way you can see the sun as it is right now, because the light has to take time to travel that 93 million miles to us. So even in our own solar system, you actually look back into the past. Depending on where the planets are-- planets like Mars, maybe you're looking at something on the order of 15 minutes away, by the time you get to the outer planets, you're looking at things that are many hours away.
So even our own solar system is looking back into the past as you look farther out into space. But then things start to get much more dramatic as you look farther and farther away. And in fact, the nearest star to us in the sky, Alpha Centauri, is four light years away. That's the time it takes light to travel in one year. One light year is about 6 trillion miles. There's no way you can see Alpha Centauri the way it is now. You're seeing it as it was four years ago. You go farther out, and soon this becomes very dramatic. The nearest galaxy to us, Andromeda, is 2 million light years away. So when you look up at Andromeda, you're looking at light that came to the earth at the very, very dawn of the human species.
Two million years ago, we were fairly different than we are now. The farthest we can see, you're actually looking back billions of years-- you're actually looking back at light that's coming to you today, the light is actually arriving at your eyeballs today-- before the earth even formed. And the farthest away we can see is actually quite breathtaking. We can see a distance that corresponds to a time about 400,000 years after the Big Bang. That's something like 13 billion years ago. The light actually took 13 billion years to get to us. And the thing that's so powerful about that as a scientist is, over that much time, things start to look very different. Even in the course of a few million light years away, galaxies look pretty much the same way they do now. The stars look very much the same, the galaxies look a lot like the Milky Way.
But as you go farther and farther out into space and the light has taken longer to reach you, things begin to change very dramatically. Galaxies don't look the same. They tend to be smaller, they tend to be more active, they have very active black holes at their centers that we don't see around the nearby galaxies today. So the conditions must have been different billions of years ago for these giant black holes to have all this stuff falling into them. We even see, as you look very far out, the chemistry of the universe begins to change. Because, amazingly, every element besides hydrogen and a little bit of helium was formed by dying stars so when you look back billions of years, there have been fewer stars that formed elements like oxygen, and carbon, and iron, and everything else that makes up me, besides hydrogen.
The farthest out we can see, 400,000 years after the Big Bang, we actually see in microwave observations. And these are actually very large observations on the sky. We don't see a lot of detail. The pixels are very big. We can't really see individual things out there. But we see that the entire universe, 400,000 years after the Big Bang, was all very hot hydrogen gas, and that's it. And that's real. That's not a theory. That's not something that we actually are using mathematics to try to describe. That's a picture if you look out into space in any direction in the sky-- we've actually done the entire sky, all around us. If you look out to that distance, all you see is very hot hydrogen gas at very nearly the same temperature.
The variations are much, much less than a single degree across the entire sky. Every way you look, in every direction away from you, you look back in time, until finally you get to the when the universe was nothing but hot hydrogen. And that's actually as far as we can see. And the reason is, any farther out, you're looking back to a time when the universe was so hot and so dense it was actually opaque to light. It's like looking at the surface of the sun. So pick any direction on the sky, look out to a time 13 billion years ago, and what you see is something very much like the surface of the sun, very hot hydrogen gas, all around us. This is one of the most amazing observations ever made. We actually have a real time machine that allows us to look back and see how the entire universe formed up to that point. And then we can't see anymore because it was so hot. We definitely need more detailed observations.
And the next generation of space telescopes is going to go after the details-- how did the very first stars form? Because that light is still reaching us tonight. I mean, tonight, up in the sky, it's too faint for your eyes to detect, but with a giant telescope, there's light arriving today from 12 billion years ago, the first generation of stars, and our new instruments are going to be able to catch that. So as we look out into the universe, it's all right there. We have a ringside seat to see how everything formed and everything changed, ever since the Big Bang.
- Light moves at 186,000 miles per second.
- As fast as light speed is, when you think about how large the universe is, light takes time — a lot of time — to actually get to us from distant objects.
- The sun is about 93 million miles away. At 186,000 miles per second, it takes about eight minutes for light from the sun to actually reach us here on Earth. Because of this, when you look up at the sun — with eye protection — you're actually seeing the star as it was nearly 10 minutes ago, not as it is in real time.
- Light-Based Computers May Soon Become a Reality - Big Think ›
- Are the outer edges of the universe moving faster than the speed of ... ›
- 4 Things That Currently Break the Speed of Light Barrier - Big Think ›
Big ideas.
Once a week.
Subscribe to our weekly newsletter.
How New York's largest hospital system is predicting COVID-19 spikes
Northwell Health is using insights from website traffic to forecast COVID-19 hospitalizations two weeks in the future.
- The machine-learning algorithm works by analyzing the online behavior of visitors to the Northwell Health website and comparing that data to future COVID-19 hospitalizations.
- The tool, which uses anonymized data, has so far predicted hospitalizations with an accuracy rate of 80 percent.
- Machine-learning tools are helping health-care professionals worldwide better constrain and treat COVID-19.
The value of forecasting
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTA0Njk2OC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyMzM2NDQzOH0.rid9regiDaKczCCKBsu7wrHkNQ64Vz_XcOEZIzAhzgM/img.jpg?width=980" id="2bb93" class="rm-shortcode" data-rm-shortcode-id="31345afbdf2bd408fd3e9f31520c445a" data-rm-shortcode-name="rebelmouse-image" data-width="1546" data-height="1056" />Northwell emergency departments use the dashboard to monitor in real time.
Credit: Northwell Health
<p>One unique benefit of forecasting COVID-19 hospitalizations is that it allows health systems to better prepare, manage and allocate resources. For example, if the tool forecasted a surge in COVID-19 hospitalizations in two weeks, Northwell Health could begin:</p><ul><li>Making space for an influx of patients</li><li>Moving personal protective equipment to where it's most needed</li><li>Strategically allocating staff during the predicted surge</li><li>Increasing the number of tests offered to asymptomatic patients</li></ul><p>The health-care field is increasingly using machine learning. It's already helping doctors develop <a href="https://care.diabetesjournals.org/content/early/2020/06/09/dc19-1870" target="_blank">personalized care plans for diabetes patients</a>, improving cancer screening techniques, and enabling mental health professionals to better predict which patients are at <a href="https://healthitanalytics.com/news/ehr-data-fuels-accurate-predictive-analytics-for-suicide-risk" target="_blank" rel="noopener noreferrer">elevated risk of suicide</a>, to name a few applications.</p><p>Health systems around the world have already begun exploring how <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315944/" target="_blank" rel="noopener noreferrer">machine learning can help battle the pandemic</a>, including better COVID-19 screening, diagnosis, contact tracing, and drug and vaccine development.</p><p>Cruzen said these kinds of tools represent a shift in how health systems can tackle a wide variety of problems.</p><p>"Health care has always used the past to predict the future, but not in this mathematical way," Cruzen said. "I think [Northwell Health's new predictive tool] really is a great first example of how we should be attacking a lot of things as we go forward."</p>Making machine-learning tools openly accessible
<p>Northwell Health has made its predictive tool <a href="https://github.com/northwell-health/covid-web-data-predictor" target="_blank">available for free</a> to any health system that wishes to utilize it.</p><p>"COVID is everybody's problem, and I think developing tools that can be used to help others is sort of why people go into health care," Dr. Cruzen said. "It was really consistent with our mission."</p><p>Open collaboration is something the world's governments and health systems should be striving for during the pandemic, said Michael Dowling, Northwell Health's president and CEO.</p><p>"Whenever you develop anything and somebody else gets it, they improve it and they continue to make it better," Dowling said. "As a country, we lack data. I believe very, very strongly that we should have been and should be now working with other countries, including China, including the European Union, including England and others to figure out how to develop a health surveillance system so you can anticipate way in advance when these things are going to occur."</p><p>In all, Northwell Health has treated more than 112,000 COVID patients. During the pandemic, Dowling said he's seen an outpouring of goodwill, collaboration, and sacrifice from the community and the tens of thousands of staff who work across Northwell.</p><p>"COVID has changed our perspective on everything—and not just those of us in health care, because it has disrupted everybody's life," Dowling said. "It has demonstrated the value of community, how we help one another."</p>Dark matter axions possibly found near Magnificent 7 neutron stars
A new study proposes mysterious axions may be found in X-rays coming from a cluster of neutron stars.
Are Axions Dark Matter?
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="5e35ce24a5b17102bfce5ae6aecc7c14"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/e7yXqF32Yvw?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>Put on a happy face? “Deep acting” associated with improved work life
New research suggests you can't fake your emotional state to improve your work life — you have to feel it.
What is deep acting?
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTQ1NDk2OS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYxNTY5MzA0Nn0._s7aP25Es1CInq51pbzGrUj3GtOIRWBHZxCBFnbyXY8/img.jpg?width=1245&coordinates=333%2C-1%2C333%2C-1&height=700" id="ddf09" class="rm-shortcode" data-rm-shortcode-id="9dc42c4d6a8e372ad7b72907b46ecd3f" data-rm-shortcode-name="rebelmouse-image" data-width="1245" data-height="700" />Arlie Russell Hochschild (pictured) laid out the concept of emotional labor in her 1983 book, "The Managed Heart."
Credit: Wikimedia Commons
<p>Deep and surface acting are the principal components of emotional labor, a buzz phrase you have likely seen flitting about the Twittersphere. Today, "<a href="https://www.bbc.co.uk/bbcthree/article/5ea9f140-f722-4214-bb57-8b84f9418a7e" target="_blank">emotional labor</a>" has been adopted by groups as diverse as family counselors, academic feminists, and corporate CEOs, and each has redefined it with a patented spin. But while the phrase has splintered into a smorgasbord of pop-psychological arguments, its initial usage was more specific.</p><p>First coined by sociologist Arlie Russell Hochschild in her 1983 book, "<a href="https://www.ucpress.edu/book/9780520272941/the-managed-heart" target="_blank">The Managed Heart</a>," emotional labor describes the work we do to regulate our emotions on the job. Hochschild's go-to example is the flight attendant, who is tasked with being "nicer than natural" to enhance the customer experience. While at work, flight attendants are expected to smile and be exceedingly helpful even if they are wrestling with personal issues, the passengers are rude, and that one kid just upchucked down the center aisle. Hochschild's counterpart to the flight attendant is the bill collector, who must instead be "nastier than natural."</p><p>Such personas may serve an organization's mission or commercial interests, but if they cause emotional dissonance, they can potentially lead to high emotional costs for the employee—bringing us back to deep and surface acting.</p><p>Deep acting is the process by which people modify their emotions to match their expected role. Deep actors still encounter the negative emotions, but they devise ways to <a href="http://www.selfinjury.bctr.cornell.edu/perch/resources/what-is-emotion-regulationsinfo-brief.pdf" target="_blank">regulate those emotions</a> and return to the desired state. Flight attendants may modify their internal state by talking through harsh emotions (say, with a coworker), focusing on life's benefits (next stop Paris!), physically expressing their desired emotion (smiling and deep breaths), or recontextualizing an inauspicious situation (not the kid's fault he got sick).</p><p>Conversely, surface acting occurs when employees display ersatz emotions to match those expected by their role. These actors are the waiters who smile despite being crushed by the stress of a dinner rush. They are the CEOs who wear a confident swagger despite feelings of inauthenticity. And they are the bouncers who must maintain a steely edge despite humming show tunes in their heart of hearts.</p><p>As we'll see in the research, surface acting can degrade our mental well-being. This deterioration can be especially true of people who must contend with negative emotions or situations inside while displaying an elated mood outside. Hochschild argues such emotional labor can lead to exhaustion and self-estrangement—that is, surface actors erect a bulwark against anger, fear, and stress, but that disconnect estranges them from the emotions that allow them to connect with others and live fulfilling lives.</p>Don't fake it till you make it
<p>Most studies on emotional labor have focused on customer service for the obvious reason that such jobs prescribe emotional states—service with a smile or, if you're in the bouncing business, a scowl. But <a href="https://eller.arizona.edu/people/allison-s-gabriel" target="_blank">Allison Gabriel</a>, associate professor of management and organizations at the University of Arizona's Eller College of Management, wanted to explore how employees used emotional labor strategies in their intra-office interactions and which strategies proved most beneficial.</p><p>"What we wanted to know is whether people choose to engage in emotion regulation when interacting with their co-workers, why they choose to regulate their emotions if there is no formal rule requiring them to do so, and what benefits, if any, they get out of this effort," Gabriel said in <a href="https://www.sciencedaily.com/releases/2020/01/200117162703.htm" target="_blank">a press release</a>.</p><p>Across three studies, she and her colleagues surveyed more than 2,500 full-time employees on their emotional regulation with coworkers. The survey asked participants to agree or disagree with statements such as "I try to experience the emotions that I show to my coworkers" or "I fake a good mood when interacting with my coworkers." Other statements gauged the outcomes of such strategies—for example, "I feel emotionally drained at work." Participants were drawn from industries as varied as education, engineering, and financial services.</p><p>The results, <a href="https://psycnet.apa.org/doiLanding?doi=10.1037%2Fapl0000473" target="_blank" rel="noopener noreferrer">published in the Journal of Applied Psychology</a>, revealed four different emotional strategies. "Deep actors" engaged in high levels of deep acting; "low actors" leaned more heavily on surface acting. Meanwhile, "non-actors" engaged in negligible amounts of emotional labor, while "regulators" switched between both. The survey also revealed two drivers for such strategies: prosocial and impression management motives. The former aimed to cultivate positive relationships, the latter to present a positive front.</p><p>The researchers found deep actors were driven by prosocial motives and enjoyed advantages from their strategy of choice. These actors reported lower levels of fatigue, fewer feelings of inauthenticity, improved coworker trust, and advanced progress toward career goals. </p><p>As Gabriel told <a href="https://www.psypost.org/2021/01/new-psychology-research-suggests-deep-acting-can-reduce-fatigue-and-improve-your-work-life-59081" target="_blank" rel="noopener noreferrer">PsyPost in an interview</a>: "So, it's a win-win-win in terms of feeling good, performing well, and having positive coworker interactions."</p><p>Non-actors did not report the emotional exhaustion of their low-actor peers, but they also didn't enjoy the social gains of the deep actors. Finally, the regulators showed that the flip-flopping between surface and deep acting drained emotional reserves and strained office relationships.</p><p>"I think the 'fake it until you make it' idea suggests a survival tactic at work," Gabriel noted. "Maybe plastering on a smile to simply get out of an interaction is easier in the short run, but long term, it will undermine efforts to improve your health and the relationships you have at work. </p><p>"It all boils down to, 'Let's be nice to each other.' Not only will people feel better, but people's performance and social relationships can also improve."</p>You'll be glad ya' decided to smile
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="88a0a6a8d1c1abfcf7b1aca8e71247c6"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/QOSgpq9EGSw?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span><p>But as with any research that relies on self-reported data, there are confounders here to untangle. Even during anonymous studies, participants may select socially acceptable answers over honest ones. They may further interpret their goal progress and coworker interactions more favorably than is accurate. And certain work conditions may not produce the same effects, such as toxic work environments or those that require employees to project negative emotions.</p><p>There also remains the question of the causal mechanism. If surface acting—or switching between surface and deep acting—is more mentally taxing than genuinely feeling an emotion, then what physiological process causes this fatigue? <a href="https://www.frontiersin.org/articles/10.3389/fnhum.2019.00151/full" target="_blank">One study published in the <em>Frontiers in Human Neuroscience</em></a><em> </em>measured hemoglobin density in participants' brains using an fNIRS while they expressed emotions facially. The researchers found no significant difference in energy consumed in the prefrontal cortex by those asked to deep act or surface act (though, this study too is limited by a lack of real-life task).<br></p><p>With that said, Gabriel's studies reinforce much of the current research on emotional labor. <a href="https://journals.sagepub.com/doi/abs/10.1177/2041386611417746" target="_blank">A 2011 meta-analysis</a> found that "discordant emotional labor states" (read: surface acting) were associated with harmful effects on well-being and performance. The analysis found no such consequences for deep acting. <a href="https://doi.apa.org/doiLanding?doi=10.1037%2Fa0022876" target="_blank" rel="noopener noreferrer">Another meta-analysis</a> found an association between surface acting and impaired well-being, job attitudes, and performance outcomes. Conversely, deep acting was associated with improved emotional performance.</p><p>So, although there's still much to learn on the emotional labor front, it seems Van Dyke's advice to a Leigh was half correct. We should put on a happy face, but it will <a href="https://bigthink.com/design-for-good/everything-you-should-know-about-happiness-in-one-infographic" target="_self">only help if we can feel it</a>.</p>Listen: Scientists re-create voice of 3,000-year-old Egyptian mummy
Scientists used CT scanning and 3D-printing technology to re-create the voice of Nesyamun, an ancient Egyptian priest.
- Scientists printed a 3D replica of the vocal tract of Nesyamun, an Egyptian priest whose mummified corpse has been on display in the UK for two centuries.
- With the help of an electronic device, the reproduced voice is able to "speak" a vowel noise.
- The team behind the "Voices of the Past" project suggest reproducing ancient voices could make museum experiences more dynamic.
Howard et al.
<p style="margin-left: 20px;">"While this approach has wide implications for heritage management/museum display, its relevance conforms exactly to the ancient Egyptians' fundamental belief that 'to speak the name of the dead is to make them live again'," they wrote in a <a href="https://www.nature.com/articles/s41598-019-56316-y#Fig3" target="_blank">paper</a> published in Nature Scientific Reports. "Given Nesyamun's stated desire to have his voice heard in the afterlife in order to live forever, the fulfilment of his beliefs through the synthesis of his vocal function allows us to make direct contact with ancient Egypt by listening to a sound from a vocal tract that has not been heard for over 3000 years, preserved through mummification and now restored through this new technique."</p>Connecting modern people with history
<p>It's not the first time scientists have "re-created" an ancient human's voice. In 2016, for example, Italian researchers used software to <a href="https://www.smithsonianmag.com/smart-news/hear-recreated-voice-otzi-iceman-180960570/" target="_blank">reconstruct the voice of Ötzi,</a> an iceman who was discovered in 1991 and is thought to have died more than 5,000 years ago. But the "Voices of the Past" project is different, the researchers note, because Nesyamun's mummified corpse is especially well preserved.</p><p style="margin-left: 20px;">"It was particularly suited, given its age and preservation [of its soft tissues], which is unusual," Howard told <em><a href="https://www.livescience.com/amp/ancient-egypt-mummy-voice-reconstructed.html" target="_blank">Live Science</a>.</em></p><p>As to whether Nesyamun's reconstructed voice will ever be able to speak complete sentences, Howard told <em><a href="https://abcnews.go.com/Weird/wireStory/ancient-voice-scientists-recreate-sound-egyptian-mummy-68482015" target="_blank">The Associated Press</a>, </em>that it's "something that is being worked on, so it will be possible one day."</p><p>John Schofield, an archaeologist at the University of York, said that reproducing voices from history can make museum experiences "more multidimensional."</p><p style="margin-left: 20px;">"There is nothing more personal than someone's voice," he told <em>The Associated Press.</em> "So we think that hearing a voice from so long ago will be an unforgettable experience, making heritage places like Karnak, Nesyamun's temple, come alive."</p>World's oldest work of art found in a hidden Indonesian valley
Archaeologists discover a cave painting of a wild pig that is now the world's oldest dated work of representational art.
- Archaeologists find a cave painting of a wild pig that is at least 45,500 years old.
- The painting is the earliest known work of representational art.
- The discovery was made in a remote valley on the Indonesian island of Sulawesi.
Oldest Cave Art Found in Sulawesi
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="a9734e306f0914bfdcbe79a1e317a7f0"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/b-wAYtBxn7E?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>