How to Fix Science

Question: Does personality shape scientists’ interpretation of data?

\r\n

Peter Ward: Well, science is certainly affected by how scientists perceive it should be, we’re all human. And human nature being what it is, it’s really a shame that science as we know it now discourages scientists talking to people other than scientists. Carl Sagan knew much about this. We invented a word, Saganized, or Saganization, in which your fellow scientists frown on you for attempting to talk to the masses.

\r\n

The way it comes down, it’s just sort of a prim down turning of the mouth, but the reaction is, why have you wasted your time. That’s time that could have gone into doing your science and you have taken it away and done something else. Well, you have not come to your full potential as a scientist. I personally am pretty upset about this in the sense that I think the reason that we only have half of American’s believing in evolution, the reason we have so many Americans thinking that there’s a political motive in global warming is that the science communication coming out of the professional scientists, most of whom are university professors, is abysmal.

\r\n

And as an example, when you come up for a job interview, you have been vetted from a hundred candidates. And the way that we cut down is to look at their scientific output. If this is a post-doc, or someone with a brand new PhD, we’re looking entirely at research productivity. If research productivity is marred by there’s an outreach component to this that sets that person in deficit compared to that other person who’s got that one more scientific article.

\r\n

When we come up for promotion, we never look at; say hey, two scientific Americans, no, we saw, wow three papers in science, okay. That’s what goes. You don’t get promoted for the side stuff. When I write books, I’ve done 16 now. They don’t go to my promotion packets. These are the sort of ugly little aside that tried us that the person has been doing as a hobby, but is not part of the professional meat. It has nothing to do with me as my professorship position. That outreach stuff, that’s somebody else. I actually give it an entirely different name. And that’s the way it is across all the first rate science places.

\r\n

A lot of people do outreach, but not enough. We need to make that any PhD thesis, one chapter is outreach for the public, the other three or four are for the scientists and that this has to become institutionalized, then you can’t do it for one person, it’s got to be an entire recognition. That’s not happening.

\r\n

Question: What more can be done to improve scientific literacy among the public?

\r\n

Peter Ward: Well, if you look at PBS shows, and look at the audience of the PBS science shows. They all have the hair color I do, grey. It’s an aging graying audience. The reason, the way we have to work now, and I fully believe this, is that we scientists have to stop writing the books we write or being on the TV, or even being on program like this and start writing video games. I’ve got a 12-year old son. The only way to get to him is a video game. That’s what he wants to do all the time. Video games are the way to get into his and all his friends’ brains. Make happy, really cool, first person shooters, but at the same time get across good science. That’s the way to do it. I mean, I’ve really come to the conclusion that writing these books does virtually nothing. You’ve got to get to people who don’t get it otherwise. Video games to me seems the logical way.

\r\n

Question: What can be done to increase the number of women in science?

\r\n

Peter Ward: Well, there’s the old stereotype that women did more poorly in mathematics and that has held for a long time. But to be honest, I don’t believe, certainly in my career I have seen the women in science problem diminish enormously. We have more women graduate students in my two departments than men. It’s been that way for years now, so, whether that’s translating to the job market. Are we hiring as many women scientists and men scientists, well there’s still a function of there may be more men scientists in particular areas, but again, that’s diminishing. So, I’m hopeful that that particular aspect has changed. It seems to be.

Recorded on January 11, 2010
Interviewed\r\n by Austin Allen

Peter Ward explains how the scientific community can improve its dismal public outreach—and why he believes the problem of women in science is solving itself.

Americans under 40 want major reforms, expanded Supreme Court

Younger Americans support expanding the Supreme Court and serious political reforms, says new poll.

Credit: Jon Cherry/Getty Images
Politics & Current Affairs
  • Americans under 40 largely favor major political reforms, finds a new survey.
  • The poll revealed that most would want to expand the Supreme Court, impose terms limits, and make it easier to vote.
  • Millennials are more liberal and reform-centered than Generation Z.
Keep reading Show less

Can you solve what an MIT professor once called 'the hardest logic puzzle ever'?

Logic puzzles can teach reasoning in a fun way that doesn't feel like work.

Credit: Prostock-studio via Adobe Stock
Mind & Brain
  • Logician Raymond Smullyan devised tons of logic puzzles, but one was declared by another philosopher to be the hardest of all time.
  • The problem, also known as the Three Gods Problem, is solvable, even if it doesn't seem to be.
  • It depends on using complex questions to assure that any answer given is useful.
Keep reading Show less

The Sun was half of a binary system, a new paper suggests

The theory could resolve some unanswered questions.

Image source: NASA/Big Think
Surprising Science
  • Most stars begin in binary systems, why not ours?
  • Puzzles posed by the Oort cloud and the possibility of Planet 9 may be solved by a new theory of our sun's lost companion.
  • The sun and its partner would have become separated long, long ago.

If most stars form in binary pairs, what about our Sun? A new paper presents a model supporting the theory that the Sun may have started out as one member of a temporary binary system. There's a certain elegance to the idea — if it's true, this origin story could resolve some vexing solar-system puzzles, among them the genesis of the Oort Cloud, and the presence of massive captured objects like a Planet Nine.

The paper is published in Astrophysical Journal Letters.

The Oort cloud

Oort Cloud graphic

Image source: NASA

Scientist believe that surrounding the generally flat solar system is a spherical shell comprised of more than a trillion icy objects more than a mile wide. This is the Oort cloud, and it's likely the source of our solar system's long-term comets — objects that take 200 years or more to orbit the Sun. Inside that shell and surrounding the planets is the Kuiper Belt, a flat disk of scattered objects considered the source of shorter-term comets.

Long-term comets come at us from all directions and astronomers at first suspected their origins to be random. However, it turns out their likely trajectories lead back to a shared aphelion between 2,000 astronomical units (AU) from the Sun to about 100,000 AU, with their different points of origin revealing the shell shape of the Oort cloud along that common aphelion. (An astronomical unit is the distance from the Sun to the Earth.)

No object in the Oort cloud has been directly observed, though Voyager 1 and 2, New Horizons, and Pioneer 10 and 11 are all en route. (The cloud is so far away that all five of the craft will be dead by the time they get there.) To derive a clearer view of the Oort cloud absent actually imagery, scientists utilize computer models based on planetary orbits, solar-system formation simulations, and comet trajectories.

It's generally assumed that the Oort cloud is comprised of debris from the formation of the solar system and neighboring systems, stuff from other systems that we somehow captured. However, says paper co-author Amir Siraj of Harvard, "previous models have had difficulty producing the expected ratio between scattered disk objects and outer Oort cloud objects." As an answer to that, he says, "the binary capture model offers significant improvement and refinement, which is seemingly obvious in retrospect: most sun-like stars are born with binary companions."

"Binary systems are far more efficient at capturing objects than are single stars," co-author Ari Loeb, also of Harvard, explains. "If the Oort cloud formed as [indirectly] observed, it would imply that the sun did in fact have a companion of similar mass that was lost before the sun left its birth cluster."

Working out the source of the objects in the Oort cloud is more than just an interesting astronomical riddle, says Siraj. "Objects in the outer Oort Cloud may have played important roles in Earth's history, such as possibly delivering water to Earth and causing the extinction of the dinosaurs. Understanding their origins is important."

Planet 9

rendering of a planet in space

Image source: Caltech/R. Hurt (IPAC)/NASA

The gravitational pull resulting from a binary companion to the Sun may also help explain another intriguing phenomenon: the warping of orbital paths either by something big beyond Pluto — a Planet 9, perhaps — or smaller trans-Neptunian objects closer in, at the outer edges of the Kuiper Belt.

"The puzzle is not only regarding the Oort clouds, but also extreme trans-Neptunian objects, like the potential Planet Nine," Loeb says. "It is unclear where they came from, and our new model predicts that there should be more objects with a similar orbital orientation to [a] Planet Nine."

The authors are looking forward to the upcoming Vera C. Rubin Observatory (VRO) , a Large Synoptic Survey Telescope expected to capture its first light from the cosmos in 2021. It's expected that the VRO will definitively confirm or dismiss the existence of Planet 9. Siraj says, "If the VRO verifies the existence of Planet Nine, and a captured origin, and also finds a population of similarly captured dwarf planets, then the binary model will be favored over the lone stellar history that has been long-assumed."

Missing in action

Lord and Siraj consider it unsurprising that we see no clear sign of the Sun's former companion at this point. Says Loeb, "Passing stars in the birth cluster would have removed the companion from the sun through their gravitational influence. He adds that, "Before the loss of the binary, however, the solar system already would have captured its outer envelope of objects, namely the Oort cloud and the Planet Nine population."

So, where'd it go? Siraj answers, "The sun's long-lost companion could now be anywhere in the Milky Way."

New tardigrade species withstands lethal UV radiation thanks to fluorescent 'shield'

Another amazing tardigrade survival skill is discovered.

Credit: Suma et al., Biology Letters (2020)
Surprising Science
  • Apparently, some water bears can even beat extreme UV light.
  • It may be an adaptation to the summer heat in India.
  • Special under-skin pigments neutralize harmful rays.
Keep reading Show less
Quantcast