#5: Is the universe a hologram? The strange physics of black holes | Top 10 2019

Next on Big Think's 2019 top 10 countdown, black holes may give us a glimpse of the underlying nature of reality.

MICHELLE THALLER: Black holes really are kind of getting to the very heart of our physics. And I believe that they're kind of showing us the way that eventually we're going to need different physics and new physics. People ask questions like, "What happens inside a black hole?" Or even, "What happens at the very boundary of a black hole, the event horizon, when light is absorbed?" And honestly, our physics is telling us a lot of contradictory things. And our image of what an event horizon really is may be changing. People like Stephen Hawking and Leonard Susskind have recently come up with this idea that a black hole should not be able to destroy information. O.K., what do we mean by information? Information can be almost anything.

All of the different atoms in my body have angular momentum, they have charge, they have mass. There's all sorts of little bits of information that make me me. At the quantum mechanic level, the tiniest of levels, there are different amounts of energy, there are different probabilities that are contained in the structure of my matter. And information, in some ways is a form of energy. It's actually a way that you can describe something which is somehow, in a strange way, a higher energy state than not being able to describe something. And so one of the questions is, "If energy really can't be destroyed energy itself is something that is intrinsic in the universe, you can't really created or destroy it is it possible that information is the same way? Is there really no way to actually destroy the information about what all of my subatomic particles are doing right now?"

So black holes kind of stare you right in the face. What a black hole supposedly does is it absorbs everything. Space and time bend into a black hole so that nothing can escape. That means that any information about the material that fell in is gone. The only thing we know about it is that as a black hole absorbs material, it gets more massive. It actually adds that mass to the mass of the black hole. And as that mass increases, the event horizon becomes larger. Basically, the area where space is so curved that you can't get out begins to extend the more massive a black hole is. The most massive black holes we know of in the universe are many billions of times the mass of our sun. And the physical extent of this event horizon is about the size of our solar system, maybe like out to the planet Pluto.

So is it possible, then, if everything goes into a black hole and nothing ever comes out, space and time go inside the black hole and don't come out? What happened to that information? And this has begun to make a lot of people wonder if we really have thought of black holes the wrong way. Maybe there isn't an event horizon in the true sense. I actually had a friend of mine that studies black holes say, "Well, I'm not sure if they're black. They may be very, very dark navy blue." And what he meant by that is, maybe there are some tricks to actually get information out of a black hole. Maybe there really is some form of energy that can leak away from the black hole over time. Now, Stephen Hawking wondered if quantum effects very near the event horizon could actually separate something called virtual particles, the energy of space itself. If you're familiar with Einstein's equation, E equals MC squared, energy equals mass times the speed of light squared. Energy and mass are the same thing. They're equivalent.

You can actually make mass into energy, and you can make energy into mass. Around a black hole, where there's very hot gas, very high temperatures, very strong magnetic fields, perhaps, there's a lot of energy. And that energy can actually manifest itself as particles, mass. And the energy always creates particle/antiparticle pairs. They're called virtual particles. And matter and antimatter, the thing you know about it is that it annihilates immediately. So these tiny little particles come into existence, then annihilate, and you're back to energy. And this happens all around us all the time. So, if this happens near a black hole, it's possible one of these little particles can go into the black hole and the other one escapes. And all of a sudden, there's a particle that shouldn't be there. The universe basically has a new particle, energy from nowhere. And how can that work?

And the information theory people say that what happens is that energy has to come out of the black hole. The black hole's mass begins to decrease if there is this poor little orphan particle that shouldn't have been there in the first place. So over time, tiny particle by tiny particle, These black holes can evaporate away. And maybe there's something about those virtual particles that contain some information about the black hole and what fell into it. It even gets stranger than that, because a lot of people think that time goes slower and slower as you approach a black hole, till, at the event horizon, time basically stops. So instead of anything really ever falling into a black hole, what the event horizon may be is some sort of shell of information.

Things are stopped in time as they fell into the black hole. And right at that boundary, there is almost kind of a sphere, a two-dimensional surface that somehow contains all the information about what's inside the black hole. And this reminded people of something that the humans invented, called a hologram. Now, a hologram is a two-dimensional object. You can make it out of glass or a piece of film. And you shine a light through it, and all of a sudden, there seem to be three-dimensional projections. And the idea is that are we looking at some fundamental way the universe stores information. Around a black hole, where space and time have been crushed out of existence, could there be a shell of information, something like a hologram?

And a lot of people began to wonder, maybe that's the way the universe works on a larger scale. Maybe black holes are showing us, intrinsically, what the underlying nature of reality is, that there really is a two-dimensional surface of something that contains all information about the entire universe. Maybe in some way, we are part of this giant hologram. And I should mention that the word, hologram, in no way implies that somebody made the hologram. We're just talking about the universe may really be information contained in a two-dimensional structure, not the three dimensions that we're aware of now. This all sounds incredibly strange. I'm always a little bit afraid to even talk about it. But I think that the thing to really kind of gain from this is that black holes are staring us right in the face. We're now observing them.

They're right there. And we cannot really describe how the universe should work with one of these things. They don't make sense. The universe shouldn't be able to lose information. So how do you get information when space itself are bent in and nothing comes out? Black holes may be the key to where the next physics has to go. We all know that we need a next Einstein, a next quantum theory, something that actually describes how gravity works in very intense situations like a black hole. Now we're actually observing black holes well enough that we really have to get on this. We really have to figure out how the universe works around one of these things. And we may end up learning what the universe itself really is.

  • Big Think's fifth most popular video of 2019 explains that, because energy cannot be destroyed, only transformed, some argue that information — arguably a form of energy — cannot be destroyed either. So then, what happens to information when it is absorbed into a black hole? Scientists don't know for certain, but some posit that it may be possible for it to leak away from the black hole over time.
  • Black holes may hold information in a two-dimensional manner similar to a hologram, which take on three dimensions when light is shone through them. Some theorize that the underlying nature of reality can be glimpsed through black holes — that all the information about the entire universe is somehow held on a two-dimensional space of something.
  • To better understand how black holes work, as well as the elements surrounding them, we may need a level of physics to be developed.


Astronomers discover what makes the biggest explosions in space

New study figures out how stars produce gamma ray bursts.

University of Warwick/Mark Garlick
Surprising Science
  • Researchers find out how binary star systems produce gamma ray bursts.
  • Gamma ray bursts are the brightest explosions in the Universe.
  • Tidal effects created in a binary system keep the stars spinning fast and create the bursts.
Keep reading

The joy of French, in a dozen maps

Isogloss cartography shows diversity, richness, and humour of the French language

Strange Maps
  • Isogloss maps show what most cartography doesn't: the diversity of language.
  • This baker's dozen charts the richness and humour of French.
  • France is more than French alone: There's Breton and German, too – and more.
Keep reading

Want to be a better leader? Take off the mask.

The best leaders don't project perfection. Peter Fuda explains why.

Videos
  • There are two kinds of masks leaders wear. Executive coach Peter Fuda likens one to The Phantom of the Opera—projecting perfectionism to hide feelings of inadequacy—and the other to The Mask, where leaders assume a persona of toughness or brashness because they imagine it projects the power needed for the position.
  • Both of those masks are motivated by self-protection, rather than learning, growth and contribution. "By the way," says Fuda, "your people know you're imperfect anyway, so when you embrace your imperfections they know you're honest as well."
  • The most effective leaders are those who try to perfect their craft rather than try to perfect their image. They inspire a culture of learning and growth, not a culture where people are afraid to ask for help.

To learn more, visit peterfuda.com.