Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Brain Science: Optogenetics and Expansion Microscopy

Here are two cutting-edge neuroscience technologies that may enable us to treat conditions like blindness, epilepsy and Alzheimer's.

Ed Boyden: Over the last decade what we’ve been doing is trying to build tools that let us watch and control the operation of the brain.  If we can understand the brain the way that we understand computers, for example, maybe we could understand the brain at such a level of detail that you could really comprehend how it generates things like thoughts and feelings, actions and sensations.  For example, one technology that we’ve developed is called optogenetics.

In optogenetics we install a gene that encodes for a light sensitive protein in a cell or a set of cells in the brain.  And then we can aim light at those cells down an optical fiber or with a scanning laser.  So then you can play back activity to the brain.  People have put artificial sensations into the brain.  Can you figure out how a smell is represented for example.  People can trigger emotions and some groups have done some pretty philosophically interesting experiments.  So, for example, a group at Cal Tech has activated certain clusters of cells deep, deep in the brains of mice.  And if it’s the right cluster you can actually trigger a mouse to become aggressive or violent. They’ll attack whatever’s next to them even if it’s like a rubber glove, right.

You can also study diseases.  You can, for example, turn off overactive cells in a seizure and you can actually shut down seizures in animal models with epilepsy. These technologies are mostly being used in animals to reveal how brain circuits might be changed for therapeutic benefit.  So, for example, my group collaborated with another group to figure out that certain brain patterns actually might help clean up the debris in Alzheimer’s disease.  From that knowledge you can then go and develop other noninvasive strategies to try to help prevent, reduce the effects of or reverse brain disorders.  However, some people are exploring whether optogenetics might someday be used in humans directly.  And one area that’s of great interest is blindness.  Millions of people cannot see because the photoreceptors in their eyes, the light capturing cells have died off.  If you could convert the rest of the eye into a camera though by installing the optogenetic tools in spared cells of the eye maybe you could help these people see again.

Another technology we’ve developed allows us to map the structure of the brain.  The brain is really dense and complicated.  In a cubic millimeter of your brain you have around 100,000 cells called neurons and they’re wired up.  They’re connected at junctions called synapses.  And there are about a billion synapses in that cubic millimeter.  So mapping how the brain is wired up is a truly daunting task.  How can you image such a complex 3D structure with the nanoscale precision required to map the wiring?  Well we do it through a fairly unconventional way.  In contrast to the last 300 years of imaging where you use a lens to magnify light coming from a sample we actually take pieces of brain and fuse them with a chemical that’s a lot like the stuff in baby diapers.  And then we add water.  The baby diaper material swells and blows up the brain to make it 100 times or 1,000 times or even more bigger by volume. 

So because we move all the molecules away from each other in a smooth even fashion we can map their relative organization.  My hope is if we can map out the key geometry of the brain and how molecules are organized maybe we could simulate a brain circuit while it’s doing something like constructing a decision or sensing something or performing an action.

It’s not a very good metaphor but imagine that the brain, you’re trying to solve the brain in the same way that you might solve a computer.  You need to control the computer.  That’s the keyboard.  We use optogenetics.  You need a map of the computer, the wiring.  That’s what we’re using expansion microscopy for.  And you need to watch the computer in action, the monitor.  And we’re still working on those technologies.  I hope we’ll have that solved in the next couple of years.  But if you can put those three things together – the wiring, the watching and the control you can do a lot of interrogation of how computational circuits work. 

 

Edward Boyden is a Hertz Foundation Fellow and recipient of the prestigious Hertz Foundation Grant for graduate study in the applications of the physical, biological and engineering sciences. A professor of Biological Engineering and Brain and Cognitive Sciences at MIT, Edward Boyden explains how expansion microscopy is helping us to understand how the brain is wired, and how human therapies will benefit. He also tackles optogenetics — a technology that controls cells with light — which he hopes will restore the eyesight of the blind, dial back Alzheimer’s disease, and shut down epilepsy seizures. With the support of the Fannie and John Hertz Foundation, he pursued a PhD in neurosciences from Stanford University.


The Hertz Foundation mission is to provide unique financial and fellowship support to the nation's most remarkable PhD students in the hard sciences. Hertz Fellowships are among the most prestigious in the world, and the foundation has invested over $200 million in Hertz Fellows since 1963 (present value) and supported over 1,100 brilliant and creative young scientists, who have gone on to become Nobel laureates, high-ranking military personnel, astronauts, inventors, Silicon Valley leaders, and tenured university professors. For more information, visit hertzfoundation.org.

The “new normal” paradox: What COVID-19 has revealed about higher education

Higher education faces challenges that are unlike any other industry. What path will ASU, and universities like ASU, take in a post-COVID world?

Photo: Luis Robayo/AFP via Getty Images
Sponsored by Charles Koch Foundation
  • Everywhere you turn, the idea that coronavirus has brought on a "new normal" is present and true. But for higher education, COVID-19 exposes a long list of pernicious old problems more than it presents new problems.
  • It was widely known, yet ignored, that digital instruction must be embraced. When combined with traditional, in-person teaching, it can enhance student learning outcomes at scale.
  • COVID-19 has forced institutions to understand that far too many higher education outcomes are determined by a student's family income, and in the context of COVID-19 this means that lower-income students, first-generation students and students of color will be disproportionately afflicted.
Keep reading Show less

The biology of aliens: How much do we know?

Hollywood has created an idea of aliens that doesn't match the science.

Videos
  • Ask someone what they think aliens look like and you'll probably get a description heavily informed by films and pop culture. The existence of life beyond our planet has yet to be confirmed, but there are clues as to the biology of extraterrestrials in science.
  • "Don't give them claws," says biologist E.O. Wilson. "Claws are for carnivores and you've got to be an omnivore to be an E.T. There just isn't enough energy available in the next trophic level down to maintain big populations and stable populations that can evolve civilization."
  • In this compilation, Wilson, theoretical physicist Michio Kaku, Bill Nye, and evolutionary biologist Jonathan B. Losos explain why aliens don't look like us and why Hollywood depictions are mostly inaccurate.
Keep reading Show less

Live on Tuesday | Personal finance in the COVID-19 era

Sallie Krawcheck and Bob Kulhan will be talking money, jobs, and how the pandemic will disproportionally affect women's finances.

Dinosaur bone? Meteorite? These men's wedding bands are a real break from boredom.

Manly Bands wanted to improve on mens' wedding bands. Mission accomplished.

Sex & Relationships
  • Manly Bands was founded in 2016 to provide better options and customer service in men's wedding bands.
  • Unique materials include antler, dinosaur bones, meteorite, tungsten, and whiskey barrels.
  • The company donates a portion of profits to charity every month.
Keep reading Show less

How DNA revealed the woolly mammoth's fate – and what it teaches us today

Scientists uncovered the secrets of what drove some of the world's last remaining woolly mammoths to extinction.

Ethan Miller/Getty Images
Surprising Science

Every summer, children on the Alaskan island of St Paul cool down in Lake Hill, a crater lake in an extinct volcano – unaware of the mysteries that lie beneath.

Keep reading Show less
Quantcast