The Next Trillion Dollar Industry Is Inside You — Literally

No pep talks here, just a prediction by innovation expert Alec Ross that gene code and precision medicine is set revolutionize life the same way that computer code has.

Alec Ross: The world’s last trillion dollar industry was created out of computer code. The world’s next trillion dollar industry is going to be created out of a genetic code. Our bodies are made up of about 25,000 genes and the first human genome was mapped about 15 years ago. It was done so over a period of about a decade and at a cost of 2.7 billion dollars. Just five years ago Steve Jobs was one of ten people who had the privilege of paying $100,000 to get his genome mapped. Today the same thing that cost 2.7 billion dollars 15 years ago or $100,000 five years ago costs a couple thousand dollars. And that cost is going to continue to go down. What does this mean? It means two things. It means we are going to be able to diagnose illnesses far, far, far, far earlier. And it means we’re going to be able to develop precision medicines. First on precision medicines. Right now if you get an illness you go to your doctor and depending on what you have they’ll prescribe you one or two medicines. If you’re fat you’ll get a big dosage. If you’re skinny you’ll get a lower dosage. That’s the personalization. In the future as what I think will be as soon as four or five years when we get medicines they will be personalized to account for our personal genetic makeup as well as the specific genetic makeup of the illness that we have. And what I think this will do is it quite likely will add a couple years of expected life expectancy to all of us. It’s kind of a big deal.

The second thing – early diagnosis of illnesses. I play racquetball every now and then with this guy named Bert Vogelstein. And when I first met Bert Vogelstein I thought he was a gym rat. He’s sort of this scraggly old guy in his 60s, gray beard, wears a knee brace over his 1970 style gray sweatpants, carts his racquetball gear to the court in a dingy old Samsonite suitcase. It turns out Bert is the world’s most cited living scientist. He’s Dr. Bert Vogelstein from Johns Hopkins University. And some 30 years ago he and his team of researchers determined how mutations in proteins cause cancer. Kind of a big deal. So now Bert and his team of researchers at Johns Hopkins have developed something called a liquid biopsy. And what a liquid biopsy does is it takes a blood sample, you know, just like we get at our annual checkup now testing for things like cholesterol levels and whether you’ve got an STD. And in that blood sample they can detect cancerous cells at 1/100 the size of what can be detected by an MRI. What does that mean? It means that cancers that are routinely found in stages 3 and 4 and which are more likely than not fatal will be found early in stage 1 where cure rates are far, far higher. This is another life expectancy changer. This is another thing that is going to add years to many people’s lives.

Modern medicine is pretty fantastic, right? Wrong. Wow, you walked right into that honey trap. Pharmaceuticals are incredibly impressive and most of us wouldn’t be alive without them, but this industry is set to skyrocket in innovation over the next few decades, making our current practices seem as primitive as the 130-pound mobile phone that seemed really futuristic in '90s.


Alec Ross is one of America’s leading experts on innovation (in fact he served for four years as Senior Advisor for Innovation to the Secretary of State Hillary Clinton, a role that earned him a Distinguished Honor Award from the State Department). The world’s last trillion dollar industry was created out of computer code. What’s the world’s next trillion dollar industry? Turns out it’s been inside us all along – genomes. Procedures like genome mapping that cost $2.7 billion dollars a mere 15 years ago are now available for just a few thousand dollars, and if that still sounds like a lot to you, don’t worry, it will get a lot cheaper still.

With genomic mapping as part of our everyday medical arsenal, doctors and technicians will be able to diagnose illnesses much earlier, which has everything to do with survival rates and quality of life, and will be able to develop precision medicines that are specific to your genetic make-up and to the genomic make-up of each disease. Ross says this is "kind of a big deal" as it will add years onto our life expectancies.

Currently on the cusp of exploding, this industry will be able to detect cancers that are usually only recognized at stages 4 and 5, in stage 1 where cure rates are far, far higher. The times are exiting and hopefully many of us will be able to experience them a little longer thanks to genomic innovation.

Alec Ross' most recent book is The Industries of the Future.

Your genetics influence how resilient you are to the cold

What makes some people more likely to shiver than others?

KIRILL KUDRYAVTSEV/AFP via Getty Images
Surprising Science

Some people just aren't bothered by the cold, no matter how low the temperature dips. And the reason for this may be in a person's genes.

Keep reading Show less

Harvard study finds perfect blend of fruits and vegetables to lower risk of death

Eating veggies is good for you. Now we can stop debating how much we should eat.

Credit: Pixabay
Surprising Science
  • A massive new study confirms that five servings of fruit and veggies a day can lower the risk of death.
  • The maximum benefit is found at two servings of fruit and three of veggies—anything more offers no extra benefit according to the researchers.
  • Not all fruits and veggies are equal. Leafy greens are better for you than starchy corn and potatoes.
Keep reading Show less

A landslide is imminent and so is its tsunami

An open letter predicts that a massive wall of rock is about to plunge into Barry Arm Fjord in Alaska.

Image source: Christian Zimmerman/USGS/Big Think
Surprising Science
  • A remote area visited by tourists and cruises, and home to fishing villages, is about to be visited by a devastating tsunami.
  • A wall of rock exposed by a receding glacier is about crash into the waters below.
  • Glaciers hold such areas together — and when they're gone, bad stuff can be left behind.

The Barry Glacier gives its name to Alaska's Barry Arm Fjord, and a new open letter forecasts trouble ahead.

Thanks to global warming, the glacier has been retreating, so far removing two-thirds of its support for a steep mile-long slope, or scarp, containing perhaps 500 million cubic meters of material. (Think the Hoover Dam times several hundred.) The slope has been moving slowly since 1957, but scientists say it's become an avalanche waiting to happen, maybe within the next year, and likely within 20. When it does come crashing down into the fjord, it could set in motion a frightening tsunami overwhelming the fjord's normally peaceful waters .

"It could happen anytime, but the risk just goes way up as this glacier recedes," says hydrologist Anna Liljedahl of Woods Hole, one of the signatories to the letter.

The Barry Arm Fjord

Camping on the fjord's Black Sand Beach

Image source: Matt Zimmerman

The Barry Arm Fjord is a stretch of water between the Harriman Fjord and the Port Wills Fjord, located at the northwest corner of the well-known Prince William Sound. It's a beautiful area, home to a few hundred people supporting the local fishing industry, and it's also a popular destination for tourists — its Black Sand Beach is one of Alaska's most scenic — and cruise ships.

Not Alaska’s first watery rodeo, but likely the biggest

Image source: whrc.org

There have been at least two similar events in the state's recent history, though not on such a massive scale. On July 9, 1958, an earthquake nearby caused 40 million cubic yards of rock to suddenly slide 2,000 feet down into Lituya Bay, producing a tsunami whose peak waves reportedly reached 1,720 feet in height. By the time the wall of water reached the mouth of the bay, it was still 75 feet high. At Taan Fjord in 2015, a landslide caused a tsunami that crested at 600 feet. Both of these events thankfully occurred in sparsely populated areas, so few fatalities occurred.

The Barry Arm event will be larger than either of these by far.

"This is an enormous slope — the mass that could fail weighs over a billion tonnes," said geologist Dave Petley, speaking to Earther. "The internal structure of that rock mass, which will determine whether it collapses, is very complex. At the moment we don't know enough about it to be able to forecast its future behavior."

Outside of Alaska, on the west coast of Greenland, a landslide-produced tsunami towered 300 feet high, obliterating a fishing village in its path.

What the letter predicts for Barry Arm Fjord

Moving slowly at first...

Image source: whrc.org

"The effects would be especially severe near where the landslide enters the water at the head of Barry Arm. Additionally, areas of shallow water, or low-lying land near the shore, would be in danger even further from the source. A minor failure may not produce significant impacts beyond the inner parts of the fiord, while a complete failure could be destructive throughout Barry Arm, Harriman Fiord, and parts of Port Wells. Our initial results show complex impacts further from the landslide than Barry Arm, with over 30 foot waves in some distant bays, including Whittier."

The discovery of the impeding landslide began with an observation by the sister of geologist Hig Higman of Ground Truth, an organization in Seldovia, Alaska. Artist Valisa Higman was vacationing in the area and sent her brother some photos of worrying fractures she noticed in the slope, taken while she was on a boat cruising the fjord.

Higman confirmed his sister's hunch via available satellite imagery and, digging deeper, found that between 2009 and 2015 the slope had moved 600 feet downhill, leaving a prominent scar.

Ohio State's Chunli Dai unearthed a connection between the movement and the receding of the Barry Glacier. Comparison of the Barry Arm slope with other similar areas, combined with computer modeling of the possible resulting tsunamis, led to the publication of the group's letter.

While the full group of signatories from 14 organizations and institutions has only been working on the situation for a month, the implications were immediately clear. The signers include experts from Ohio State University, the University of Southern California, and the Anchorage and Fairbanks campuses of the University of Alaska.

Once informed of the open letter's contents, the Alaska's Department of Natural Resources immediately released a warning that "an increasingly likely landslide could generate a wave with devastating effects on fishermen and recreationalists."

How do you prepare for something like this?

Image source: whrc.org

The obvious question is what can be done to prepare for the landslide and tsunami? For one thing, there's more to understand about the upcoming event, and the researchers lay out their plan in the letter:

"To inform and refine hazard mitigation efforts, we would like to pursue several lines of investigation: Detect changes in the slope that might forewarn of a landslide, better understand what could trigger a landslide, and refine tsunami model projections. By mapping the landslide and nearby terrain, both above and below sea level, we can more accurately determine the basic physical dimensions of the landslide. This can be paired with GPS and seismic measurements made over time to see how the slope responds to changes in the glacier and to events like rainstorms and earthquakes. Field and satellite data can support near-real time hazard monitoring, while computer models of landslide and tsunami scenarios can help identify specific places that are most at risk."

In the letter, the authors reached out to those living in and visiting the area, asking, "What specific questions are most important to you?" and "What could be done to reduce the danger to people who want to visit or work in Barry Arm?" They also invited locals to let them know about any changes, including even small rock-falls and landslides.

Cephalopod aces 'marshmallow test' designed for eager children

The famous cognition test was reworked for cuttlefish. They did better than expected.

Credit: Hans Hillewaert via Wikicommons
Surprising Science
  • Scientists recently ran the Stanford marshmallow experiment on cuttlefish and found they were pretty good at it.
  • The test subjects could wait up to two minutes for a better tasting treat.
  • The study suggests cuttlefish are smarter than you think but isn't the final word on how bright they are.
Keep reading Show less
Quantcast