The Gay Gene: New Evidence Supports an Old Hypothesis

If a so-called "gay gene," exists, what is the evolutionary logic behind it? A new study offers evidence supporting the so-called "balancing selection hypothesis." 

 

 

 

What's the Big Idea?


If a so-called "gay gene" exists, what is the evolutionary logic for it? After all, you would expect that homosexuals would have fewer children than heterosexuals, so that any genetic cause of homosexuality would have been selected out of the gene pool a long time ago. 

The answer, as you might expect, is a bit complicated (if it's even the right answer). 

A new study published in the Journal of Sexual Medicine has found a link between homosexuality and female fertility. The mothers and maternal aunts of gay men have "increased fecundity compared with corresponding maternal female relatives of heterosexual men," the authors of the study write. 

This study, which the authors note was based on a small sample and "would benefit from a larger replication," supports the so-called "balancing selection hypothesis." The gay gene -- or genes -- are thought to exist on the X chromosome, and "increase the reproductive value" of the female relatives. In other words, it makes the women more attractive to men, allowing them to produce more offspring. So while the 'gay gene' may not be passed down directly, it will survive over the course of many generations. 

Not only are the maternal relatives of gay men more attractive, more fertile and subject to fewer complications during pregnancy, the study also found these women are extroverts and generally happier. In other words, if you're the mother of a gay man, you're pretty awesome.

Can this idea survive scrutiny? 

Bryan Sykes, the author of the new book, DNA USA, tackled this subject in a previous work, Adam's Curse, and more recently in an interview with Big Think. 

According to Sykes, "there is some evidence that there is a genetic predisposition to male homosexuality." And yet, in Sykes's view, it is highly unlikely there exists "a simple gay gene" that you either have or don't have. To put it another way, the idea that a simple gay gene exists "as a kind of mutation" is downright ludicrous, according to Sykes. 

However, Sykes also points out that there is some evidence that suggests the possibility of a genetic association with homosexuality without the existence of a mutated gene. He tells us:

I think you could explain it by the way that mitochondria--that piece of DNA which I’m full of admiration for because they aren't interested in men at all--are inherited down the female line. And they have ways, I think, of getting rid of male embryos and making sure that they’re propagated at the expense of males. 

One way that mitochondria might do this, Sykes says, is to influence some male fetuses during early development so these fetuses "do not turn into heterosexual males." This controversial idea, according to Sykes, "would explain how you can have a genetic association without there being a mutant gene." But why would mitochondria act this way? While it may sound weird, Sykes says this type of activity has been observed in many other animal species. He tells us:

It’s the basis of how beehives work. There are bees working away for the queen bee with no hope of having their own DNA propagated in the next generation. I think there's a possibility, at least it’s something to argue about, that a similar thing is operating in humans as regards male homosexuality. 

What's the Significance?

If the existence of the 'gay gene' is ever proven conclusively, it is unlikely to have much of an impact on the beliefs of some people who reject homosexuality as a "lifestyle." After all, some of those people simply reject science. Indeed, there are some people who want to bury their heads in the sand, and that is an issue that impacts the field of genetics in general, gay gene or no gay gene. 

So what does genetics have to teach the rest of us about who we are? Quite a lot, says Sykes, if we're in fact willing to find out. The other significant question, of course, is how much is our behavior pre-programmed in our genes and to what extent can we change ourselves and grow after we are born? Sykes has a good answer. 

While it’s "perhaps too deterministic" to say that your genes determine everything you do, Sykes says your genes are like a deck of cards. You're dealt these cards, you're influenced by these cards, but the rest depends on what you do with them.

Watch the video here:

3D printing might save your life one day. It's transforming medicine and health care.

What can 3D printing do for medicine? The "sky is the limit," says Northwell Health researcher Dr. Todd Goldstein.

Northwell Health
Sponsored by Northwell Health
  • Medical professionals are currently using 3D printers to create prosthetics and patient-specific organ models that doctors can use to prepare for surgery.
  • Eventually, scientists hope to print patient-specific organs that can be transplanted safely into the human body.
  • Northwell Health, New York State's largest health care provider, is pioneering 3D printing in medicine in three key ways.
Keep reading Show less
Big Think Edge
  • Push Past Negative Self-Talk: Give Yourself the Proper Fuel to Attack the World, with David Goggins, Former NAVY SealIf you've ever spent 5 minutes trying to meditate, you know something most people don't realize: that our minds are filled, much of the time, with negative nonsense. Messaging from TV, from the news, from advertising, and from difficult daily interactions pulls us mentally in every direction, insisting that we focus on or worry about this or that. To start from a place of strength and stability, you need to quiet your mind and gain control. For former NAVY Seal David Goggins, this begins with recognizing all the negative self-messaging and committing to quieting the mind. It continues with replacing the negative thoughts with positive ones.

10 new things we’ve learned about death

If you don't want to know anything about your death, consider this your spoiler warning.

Culture & Religion
  • For centuries cultures have personified death to give this terrifying mystery a familiar face.
  • Modern science has demystified death by divulging its biological processes, yet many questions remain.
  • Studying death is not meant to be a morbid reminder of a cruel fate, but a way to improve the lives of the living.
Keep reading Show less
Big Think Edge
  • Master Execution: How to Get from Point A to Point B in 7 Steps, with Rob Roy, Retired Navy SEALUsing the principles of SEAL training to forge better bosses, former Navy SEAL and founder of the Leadership Under Fire series Rob Roy, a self-described "Hammer", makes people's lives miserable in the hopes of teaching them how to be a tougher—and better—manager. "We offer something that you are not going to get from reading a book," says Roy. "Real leaders inspire, guide and give hope."Anybody can make a decision when everything is in their favor, but what happens in turbulent times? Roy teaches leaders, through intense experiences, that they can walk into any situation and come out ahead. In this lesson, he outlines seven SEAL-tested steps for executing any plan—even under extreme conditions or crisis situations.