Ray Kurzweil: Memorization is For Robots. People Learn By Doing.

As neuroscience, cognitive science, computer programming, and artificial intelligence progress, we’re understanding better and better how we learn. 

What’s the Big Idea? 


What do elementary pedagogy and artificial intelligence have in common? Leaders in both fields have abandoned the study of the trees for that of the forest.  

From preschool through high school, progressive educators have long advocated for project-based learning as against old-school rote memorization. The goal is transferability of knowledge, as opposed to narrow, domain-based learning. Young children, for example, master the principles of addition faster, and can apply them more broadly, by grouping real-world objects than by manipulating numbers on paper.  

A similar shift is happening in the field of artificial intelligence. Scientists are significantly improving machine-thinking by reverse-engineering human cognition. According to Ray Kurzweil, a pioneer in voice recognition technology and the author of How to Create a Mind: The Secret of Human Thought Revealed, the future of artificial intelligence is in pattern recognition. The basic algorithms of human thought, Kurzweil says, just aren’t that complicated. From an observation about the weather to a sophisticated joke, cognition at every level operates according to a few simple principles. Researchers have gotten lost, he says, in the diversity and complexity of individual neurons and are missing the bigger picture.

Video: Ray Kurzweil on project-based education 

What’s the Significance? 

While he believes that our destiny is to outsource much of what we’ve traditionally called “thinking” to machines, Kurzweil is a strong advocate for education. Not surprisingly, he rejects rote learning (“we have machines for that”) in favor of project-based learning at every level, from Kindergarten through graduate school. At Singularity University, which Kurzweil co-founded, students form small groups to tackle enormous problems like climate change. Whether or not a given project succeeds isn’t exactly the point – the point is that in struggling to come up with creative solutions, the students learn powerful problem-solving approaches they’ll be able to build upon, to develop more sophisticated forms of strategic thinking. 

The project-based approach has its critics, of course, both in education and in computer science. Opponents of the holistic learning movement argue that it throws the baby out with the bathwater, failing to teach basic and essential skills like multiplication. The political backlash in elementary public schools takes the form of programs that promote a “back to basics”, “skill-based” approach. And Microsoft co-founder Paul Allen argues that attempting to "reverse-engineer" the brain with our limited, present day knowledge is like asking medieval scientists to reverse-engineer a jet engine. 

Both Kurzweil and the most sophisticated educator-advocates of project-based learning would argue that the question is one of orientation. For example, while voracious readers develop strong and contextually rich vocabularies, vocabulary flash cards can be valuable scaffolding for any student. But if the goal is to produce powerful communicators and critical thinkers, the emphasis needs to be primarily on reading rather than on amassing vocabulary or diagramming sentences. Likewise, Kurzweil and his fellow deep-learning theorists owe and acknowledge an enormous debt to detail-oriented neuro- and cognitive science, but their progress relies on identifying and building upon a few simple principles of how the mind operates. 

As neuroscience, cognitive science, computer programming, and artificial intelligence progress, we’re understanding better and better how we learn. The promise for education is that we’ll gradually move away from vacillating between idiosyncratic experimentation and traditionalism, and toward methods of learning that will capitalize on our brain’s unique capacity for curiosity, discovery, creativity, and intellectual delight. 

Follow Jason Gots (@jgots) on Twitter 

Image credit: Shutterstock.com

Researchers discover intact brain cells of man killed by Mt Vesuvius eruption

The young man died nearly 2,000 years ago in the volcanic eruption that buried Pompeii.

The body's features are outlined with the sketch drawn at the time of the discovery (1961). The posterior part of the skull (the occipital bone and part of the parietals) had completely exploded, leaving the inner part visible. A. Vitrified brain fragment collected from the inner part of the skull; B. Vitrified spinal cord fragment from the spine (SEM, scale bars in mm).

Credit: PLOS ONE
Culture & Religion
  • A team of researchers in Italy discovered the intact brain cells of a young man who died in the Mount Vesuvius eruption in A.D. 79.
  • The brain's cell structure was visible to researchers (who used an electron microscope) in a glassy, black material found inside the man's skull.
  • The material was likely the victim's brain preserved through the process of vitrification in which the intense heat followed by rapid cooling turned the organ to glass.
Keep reading Show less

Could muons point to new physics?

New data have set the particle physics community abuzz.

Credit: Stefano Garau / Adobe Stock and Trahko / Adobe Stock
13-8
  • The first question ever asked in Western philosophy, "What's the world made of?" continues to inspire high energy physicists.
  • New experimental results probing the magnetic properties of the muon, a heavier cousin of the electron, seem to indicate that new particles of nature may exist, potentially shedding light on the mystery of dark matter.
  • The results are a celebration of the human spirit and our insatiable curiosity to understand the world and our place in it.
Keep reading Show less
Credit: William Thomas Cain via Getty Images
Personal Growth
  • Benjamin Franklin wrote essays on a whole range of subjects, but one of his finest was on how to be a nice, likable person.
  • Franklin lists a whole series of common errors people make while in the company of others, like over-talking or storytelling.
  • His simple recipe for being good company is to be genuinely interested in others and to accept them for who they are.
Keep reading Show less
Quantcast