Stephen Hawking had pinned his hopes on ‘M-theory’ to fully explain the universe – here’s what it is

During the second string revolution, in 1995, physicists proposed that the five consistent string theories are actually only different faces of a unique theory.

Rumour has it that Albert Einstein spent his last few hours on Earth scribbling something on a piece of paper in a last attempt to formulate a theory of everything. Some 60 years later, another legendary figure in theoretical physics, Stephen Hawking, may have passed away with similar thoughts. We know Hawking thought something called “M-theory” is our best bet for a complete theory of the universe. But what is it?

Since the formulation of Einstein’s theory of general relativity in 1915, every theoretical physicist has been dreaming of reconciling our understanding of the infinitely small world of atoms and particles with that of the infinitely large scale of the cosmos. While the latter is effectively described by Einstein’s equations, the former is predicted with extraordinary accuracy by the so-called Standard Model of fundamental interactions.

Our current understanding is that the interaction between physical objects is described by four fundamental forces. Two of them – gravity and electromagnetism – are relevant for us on a macroscopic level, we deal with them in our everyday life. The other two, dubbed strong and weak interactions, act on a very small scale and become relevant only when dealing with subatomic processes.

The standard model of fundamental interactions provides a unified framework for three of these forces, but gravity cannot be consistently included in this picture. Despite its accurate description of large scale phenomena such as a planet’s orbit or galaxy dynamics, general relativity breaks down at very short distances. According to the standard model, all forces are mediated by specific particles. For gravity, a particle called the graviton does the job. But when trying to calculate how these gravitons interact, nonsensical infinities appear.

A consistent theory of gravity should be valid at any scale and should take into account the quantum nature of fundamental particles. This would accommodate gravity in a unified framework with the other three fundamental interactions, thus providing the celebrated theory of everything. Of course, since Einstein’s death in 1955, a lot of progress has been made and nowadays our best candidate goes under the name of M-theory.

String revolution

To understand the basic idea of M-theory, one has to go back to the 1970s when scientists realised that, rather than describing the universe based on point like particles, you could describe it in terms of tiny oscillating strings (tubes of energy). This new way of thinking about the fundamental constituents of nature turned out to solve many theoretical problems. Above all, a particular oscillation of the string could be interpreted as a graviton. And unlike the standard theory of gravity, string theory can describe its interactions mathematically without getting strange infinities. Thus, gravity was finally included in a unified framework.

After this exciting discovery, theoretical physicists devoted a lot of effort to understanding the consequences of this seminal idea. However, as often happens with scientific research, the history of string theory is characterised by ups and downs. At first, people were puzzled because it predicted the existence of a particle which travels faster than the speed of light, dubbed a “tachyon”. This prediction was in contrast with all the experimental observations and cast serious doubt on string theory.

Nevertheless, this issue was solved in the early 1980s by the introduction of something called “supersymmetry” in string theory. This predicts that every particle has a superpartner and, by an extraordinary coincidence, the same condition actually eliminates the tachyon. This first success is commonly known as “the first string revolution”.

Another striking feature is that string theory requires the existence of ten spacetime dimensions. Currently, we only know of four: depth, height, width and time. Although this might seem a major obstacle, several solutions have been proposed and nowadays it is considered as a notable feature, rather than a problem.

For example, we could somehow be forced to live in a four dimensional world without any access to the extra dimensions. Or the extra dimensions could be “compactified” on such a small scale we wouldn’t notice them. However, different compactifications would lead to different values of the physical constants and, therefore, different physics laws. A possible solution is that our universe is just one of many in an infinite “multiverse”, governed by different physics laws.

Are there other universes? Pixabay.CC BY

This may seem odd, but a lot of theoretical physicists are coming around to this idea. If you are not convinced you may try to read the novel Flatland: a romance of many dimensions by Edwin Abbott, in which the characters are forced to live in two space dimensions and are unable to realise there is a third one.


But there was one remaining pressing issue that was bothering string theorists at the time. A thorough classification showed the existence of five different consistent string theories, and it was unclear why nature would pick one out of five.

This is when M-theory entered the game. During the second string revolution, in 1995, physicists proposed that the five consistent string theories are actually only different faces of a unique theory which lives in eleven spacetime dimensions and is known as M-theory. It includes each of the string theories in different physical contexts, but is still valid for all of them. This extremely fascinating picture has led most theoretical physicists to believe in M-theory as the theory of everything – it is also more mathematically consistent than other candidate theories.

Nevertheless, so far M-theory has struggled in producing predictions that can be tested by experiments. Supersymmetry is currently being testedat the Large Hadron Collider. If scientists do find evidence of superpartners, that would ultimately strengthen M-theory. But it still remains a challenge for current theoretical physicists to produce testable predictions and for experimental physicists to set up experiments to test them.

Most great physicists and cosmologists are driven by a passion to find that beautiful, simple description of the world that can explain everything. And although we are not quite there yet, we wouldn’t have a chance without the sharp, creative minds of people like Hawking.

Tesla introduces new Model 3 at $45,000

The new version's battery has a shorter range and a price $4,000 lower than the previous starting price.

Tesla Model 3 (Photo: Tesla)
Technology & Innovation
  • Tesla's new version of the Model 3 costs $45,000 and can travel 260 miles on one charge.
  • The Model 3 is the best-selling luxury car in the U.S.
  • Tesla still has yet to introduce a fully self-driving car, even though it once offered the capability as an option to be installed at a future date.
Keep reading Show less
Mind & Brain
  • When it comes to educating, says Dr. Elizabeth Alexander, a brave failure is preferable to timid success.
  • Fostering an environment where one isn't afraid to fail is tantamount to learning.
  • Human beings are complicated and flawed. Working with those complications and flaws leads to true knowledge.
Keep reading Show less

The surprising psychology of sex with your ex

We all know sleeping with your ex is a bad idea, or is it?

Sex & Relationships
  • In the first study of its kind, researchers have found sex with an ex didn't prevent people from getting over their relationship.
  • Instead of feeling worse about their breakup after a hookup, the new singles who attempted sexual contact with their ex reported feeling better afterwards.
  • The findings suggest that not every piece of relationship advice is to be taken at face value.
Keep reading Show less

Denmark has the flattest work hierarchy in the world

"It's about having employees that are empowered."

Photo by rawpixel on Unsplash

Denmark may be the birthplace of the Lego tower, but its workplace hierarchy is the flattest in the world.

According to the World Economic Forum's Global Competitiveness Report 2018, the nation tops an index measuring "willingness to delegate authority" at work, beating 139 other countries.

Keep reading Show less

Yes, Mega Millions just passed $1 billion. What does that look like?

It's hard to imagine such a number. But these images will help you try.

The Mega Millions lottery just passed $1 billion for tonight's drawing.

What does that even look like, when represented by various currencies?

It takes just 6 numbers to win. You can only, however, purchase tickets up until 10:45 ET tonight.

Keep reading Show less

Relationship hack: Why class clowns make better partners

Want a happy, satisfying relationship? Psychologists say the best way is to learn to take a joke.

Photo by Tim Mossholder on Unsplash
Sex & Relationships
  • New research looks at how partners' attitudes toward humor affects the overall quality of a relationship.
  • Out of the three basic types of people, people who love to be laughed at made for better partners.
  • Fine-tuning your sense of humor might be the secret to a healthy, happy, and committed relationship.
Keep reading Show less

Single algae cells can help deliver targeted medicine

Tiny and efficient, these biodegradable single cells show promise as a way to target hard-to-reach cancers.

Credit: O. Yasa et al./Adv. Mater.
Surprising Science
  • Scientists in Germany have found a potential improvement on the idea of bacteria delivering medicine.
  • This kind of microtargeting could be useful in cancer treatments.
  • The microswimmers are biodegradable and easy to produce.

Metin Sitti and colleagues at the Max Planck Institute in Germany recently demonstrated that tiny drugs could be attached to individual algae cells and that those algae cells could then be directed through body-like fluid by a magnetic field.

The results were recently published in Advanced Materials, and the paper as a whole offers up a striking portrait of precision and usefulness, perhaps loosely comparable in overall quality to recent work done by The Yale Quantum Institute. It begins by noting that medicine has been attached to bacteria cells before, but bacteria can multiply and end up causing more harm than good.

A potential solution to the problem seems to have been found in an algal cell: the intended object of delivery is given a different electrical charge than the algal cell, which helps attach the object to the cell. The movement of the algae was then tested in 2D and 3D. (The study calls this cell a 'microswimmer.') It would later be found that "3D mean swimming speed of the algal microswimmers increased more than twofold compared to their 2D mean swimming speed." The study continues —

More interestingly, 3D mean swimming speed of the algal microswimmers in the presence of a uniform magnetic field in the x-direction was approximately threefolds higher than their 2D mean swimming speed.

After the 2D and 3D speed of the algal was examined, it was then tested in something made to approximate human fluid, including what they call 'human tubal fluid' (think of the fallopian tubes), plasma, and blood. They then moved to test the compatibility of the microswimmer with cervical cancer cells, ovarian cancer cells, and healthy cells. They found that the microswimmer didn't follow the path of bacteria cells and create something toxic.

The next logical steps from the study include testing this inside a living organism in order to assess the safety of the procedure. Potential future research could include examining how effective this method of drug delivery could be in targeting "diseases in deep body locations," as in, the reproductive and gastrointestinal tracts.

Gary Shteyngart: reality catches up to dystopian fiction

Our modern-day Kafka on his new novel Lake Success and the dark comedy that in 2018 pretty much writes itself

Technology & Innovation
  • riding the Greyhounds of hell, from New York to El Paso
  • the alternate reality of hedge fund traders
Keep reading Show less