Stanford engineers develop new light and sound tech to finally map the ocean floor

A clever new design introduces a way to image the vast ocean floor.

Stanford engineers develop new light and sound tech to finally map the ocean floor
Credit: ValentinValkov/Adobe Stock
  • Neither light- nor sound-based imaging devices can penetrate the deep ocean from above.
  • Stanford scientists have invented a new system that incorporates both light and sound to overcome the challenge of mapping the ocean floor.
  • Deployed from a drone or helicopter, it may finally reveal what lies beneath our planet's seas.

A great many areas of the ocean floor covering about 70 percent of the Earth remain unmapped. With current technology, it's an extremely arduous and time-consuming task, accomplished only by trawling unmapped areas with sonar equipment dangling from boats. Advanced imaging technologies that work so well on land are stymied by the relative impenetrability of water.

That may be about to change. Scientists at Stanford University have announced an innovative system that combines the strengths of light-based devices and those of sound-based devices to finally make mapping the entire sea floor possible from the sky.

The new system is detailed in a study published in IEEE Explore.

The challenge

"Airborne and spaceborne radar and laser-based, or LIDAR, systems have been able to map Earth's landscapes for decades. Radar signals are even able to penetrate cloud coverage and canopy coverage. However, seawater is much too absorptive for imaging into the water," says lead study author and electrical engineer Amin Arbabian of Stanford's School of Engineering in Stanford News.

One of the most reliable ways to map a terrain is by using sonar, which deduces the features of a surface by analyzing sound waves that bounce off it. However, If one were to project sound waves from above into the sea, more than 99.9 percent of those sound waves would be lost as they passed into water. If they managed to reach the seabed and bounce upward out of the water, another 99.9 percent would be lost.

Electromagnetic devices—using light, microwaves, or radar signals—are also fairly useless for ocean-floor mapping from above. Says first author Aidan Fitzpatrick, "Light also loses some energy from reflection, but the bulk of the energy loss is due to absorption by the water." (Ever try to get phone service underwater? Not gonna happen.)

PASS

The solution presented in the study is the Photoacoustic Airborne Sonar System (PASS). Its core idea is the combining of sound and light to get the job done. "If we can use light in the air, where light travels well, and sound in the water, where sound travels well, we can get the best of both worlds," says Fitzpatrick.

An imaging session begins with a laser fired down to the water from a craft above the area to be mapped. When it hits the ocean surface, it's absorbed and converted into fresh sound waves that travel down to the target. When these bounce back up to the surface and out into the air and back to PASS technicians, they do still suffer a loss. However, using light on the way in and sound only on the way out cuts that loss in half.

This means that the PASS transducers that ultimately retrieve the sound waves have plenty to work with. "We have developed a system," says Arbabian, "that is sensitive enough to compensate for a loss of this magnitude and still allow for signal detection and imaging." Form there, software assembles a 3D image of the submerged target from the acoustic signals.

PASS was initially designed to help scientists image underground plant roots.

Next steps

Although its developers are confident that PASS will be able to see down thousands of meters into the ocean, so far it's only been tested in an "ocean" about the size of a fish tank—tiny and obviously free of real-world ocean turbulence.

Fitzpatrick says that, "current experiments use static water but we are currently working toward dealing with water waves. This is a challenging, but we think feasible, problem."

Scaling up, Fitzpatrick adds, "Our vision for this technology is on-board a helicopter or drone. We expect the system to be able to fly at tens of meters above the water."

U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

U.S. Navy ships

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

You are suffering from “tab overload”

Our love-hate relationship with browser tabs drives all of us crazy. There is a solution.

Photo by Anna Shvets from Pexels
Technology & Innovation
  • A new study suggests that tabs can cause people to be flustered as they try to keep track of every website.
  • The reason is that tabs are unable to properly organize information.
  • The researchers are plugging a browser extension that aims to fix the problem.
  • Keep reading Show less

    Epicurus and the atheist's guide to happiness

    Seek pleasure and avoid pain. Why make it more complicated?

    Credit: Antonio Masiello via Getty Images
    Personal Growth
    • The Epicureans were some of the world's first materialists and argued that there is neither God, nor gods, nor spirits, but only atoms and the physical world.
    • They believed that life was about finding pleasure and avoiding pain and that both were achieved by minimizing our desires for things.
    • The Epicurean Four Step Remedy is advice on how we can face the world, achieve happiness, and not worry as much as we do.
    Keep reading Show less
    13-8

    Are we in an AI summer or AI winter?

    Neither. We are entering an AI autumn.

    Quantcast