Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

A man-made embryo shows how a stem cell finds its role

A unique 3D model allows researchers to explore embryonic development.

Image source: Mijo Simunovic/Rockefeller University
  • Researchers observe the beginning of embryonic stem cells dividing into upper and lower body sections.
  • An interdisciplinary team invents an impressively accurate 10-day-old "embryoid."
  • The team's model may be important to other future research on pregnancy.

What makes stem cells so attractive for research is that they start off in an undifferentiated state — they're capable of becoming anything in the human body. Working with them, scientists can construct organoids: limited-function, synthetic versions of organs or other biological structures for study. (Organoids can't grow into independent living organisms.) However, the natural mechanism that causes embryonic stem cells to become different cell types remains an area about which not a lot is known.

Now a study identifies a particular growth factor — bone morphogenetic protein 4, or "BMP4"— that appears to be the trigger for a critical event, "symmetry breaking." It occurs about two weeks after conception via a process called gastrulation, taking place just after an embryo attaches to its mother's uterus. It's a pivotal moment at which a clump of cells first begins to separate into upper and lower body regions. "Symmetry breaking drives almost everything that happens during embryonic development," says Mijo Simunovic, a junior Fellow in the lab that conducted the research. "Our heads don't look like our feet, and that's because, at some point, the embryo breaks into two parts, anterior and posterior."

The researchers' conclusion regarding BMP4 is just part of what they've achieved — the study also validates the unique 3D model, or "embryoid," they developed as being accurate enough to use in laboratory investigations of other developmental processes.

The research is published in Nature Cell Biology.

Breaking symmetry

Artist's rendering of stem cells

Image source: Giovanni Cancemi/Shutterstock

Earlier research using mouse embryoids demonstrated symmetry breaking, and it was observed in human embryonic stem cells a few years ago, leading to the hope that symmetry breaking might also occur in an experimental embryoid if the model emulated the real thing well enough.

By combining bioengineering, physics, and developmental biology, the researchers — Simunovic, Ali H. Brivanlou and Eric D. Siggia — were able to create a new type of 3D model from human embryonic stem cells. It mimics the genetics, shape, and size of a roughly 10-day-old human embryo. (Researchers are prohibited from creating embryoids whose development goes beyond that of a natural 14-day-old.)

To test their embryoid, the researchers exposed it to a range of chemical signals the placenta releases during pregnancy until they got to bone morphogenetic protein. Simunovic recalls, "We added BMP4, and two days later one part of the three-dimensional culture became the future posterior, and the opposite part became the future anterior."

A model embryoid

Image source: ValentinaKru/Shutterstock

The teams' work results in the introduction of a new type of 3D model that may lead to better understanding of pregnancy complications, such as why some embryos fail to attach to the uterus successfully. "About 50 to 75 percent of embryos do not attach, creating a huge bottleneck to pregnancy," says Simunovic. "We don't know why that is, but using this model we may be able to find out."

Simunovic says that the model may also be useful in exploring developmentally incurred diseases. He says, "We can create 3D embryonic models of genetic conditions, and follow the developmental process in real time. These models can finally advance the understanding of a wide range of diseases for which we currently have no idea where and when things begin to go wrong."

The “new normal” paradox: What COVID-19 has revealed about higher education

Higher education faces challenges that are unlike any other industry. What path will ASU, and universities like ASU, take in a post-COVID world?

Photo: Luis Robayo/AFP via Getty Images
Sponsored by Charles Koch Foundation
  • Everywhere you turn, the idea that coronavirus has brought on a "new normal" is present and true. But for higher education, COVID-19 exposes a long list of pernicious old problems more than it presents new problems.
  • It was widely known, yet ignored, that digital instruction must be embraced. When combined with traditional, in-person teaching, it can enhance student learning outcomes at scale.
  • COVID-19 has forced institutions to understand that far too many higher education outcomes are determined by a student's family income, and in the context of COVID-19 this means that lower-income students, first-generation students and students of color will be disproportionately afflicted.
Keep reading Show less

Masturbation boosts your immune system, helping you fight off infection and illness

Can an orgasm a day really keep the doctor away?

Sexual arousal and orgasm increase the number of white blood cells in the body, making it easier to fight infection and illness.

Image by Yurchanka Siarhei on Shutterstock
Sex & Relationships
  • Achieving orgasm through masturbation provides a rush of feel-good hormones (such as dopamine, serotonin and oxytocin) and can re-balance our levels of cortisol (a stress-inducing hormone). This helps our immune system function at a higher level.
  • The surge in "feel-good" hormones also promotes a more relaxed and calm state of being, making it easier to achieve restful sleep, which is a critical part in maintaining a high-functioning immune system.
  • Just as bad habits can slow your immune system, positive habits (such as a healthy sleep schedule and active sex life) can help boost your immune system which can prevent you from becoming sick.
Keep reading Show less

Live on Tuesday | Personal finance in the COVID-19 era

Sallie Krawcheck and Bob Kulhan will be talking money, jobs, and how the pandemic will disproportionally affect women's finances.

How DNA revealed the woolly mammoth's fate – and what it teaches us today

Scientists uncovered the secrets of what drove some of the world's last remaining woolly mammoths to extinction.

Ethan Miller/Getty Images
Surprising Science

Every summer, children on the Alaskan island of St Paul cool down in Lake Hill, a crater lake in an extinct volcano – unaware of the mysteries that lie beneath.

Keep reading Show less
Scroll down to load more…
Quantcast