Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Solar Orbiter to capture first images of Sun's north, south poles

The spacecraft is set to come closer to the star than any other Sun-facing camera before it.

ESA
  • Solar Orbiter is a joint project between NASA and the European Space Agency.
  • The mission aims to study the heliosphere, and to uncover information about the Sun's internal structure, magnetic field, and activity cycle.
  • Solar Orbiter is set to ascend the ecliptic plane by the end of 2021, when it will begin imaging the Sun.


The Solar Orbiter is set to launch Monday on its mission to study the Sun and photograph its north and south poles for the first time.

The mission is a joint project between NASA and the European Space Agency that's been nearly two decades in the making. Its primary goal is to help scientists better understand how the Sun creates and controls the heliosphere, which is the giant bubble-like region of space, formed by the solar wind, that protects our solar system from interstellar radiation. The mission also aims to study the Sun's 11-year activity cycle, magnetic field and internal structure.

Solar Orbiter will orbit the Sun concurrently NASA's Parker Solar Probe, which launched 18 months ago and has flown within 4 million miles of the star. The new spacecraft won't get that close, but it will get a look at the Sun from a unique vantage point: above the ecliptic plane. From there, the orbiter will be able to photograph the star's north and south poles.

ESA

"Up until Solar Orbiter, all solar imaging instruments have been within the ecliptic plane or very close to it," Russell Howard, space scientist at the Naval Research Lab in Washington, D.C. and principal investigator for one of Solar Orbiter's ten instruments, told NASA. "Now, we'll be able to look down on the Sun from above."

Scientists aren't quite sure what they'll see.

"There's no rational reasons why the poles shouldn't be different," Mark McCaughrean, senior advisor for science & exploration at ESA, told The Guardian. "Be prepared for surprises."

Studying the Sun from outside the ecliptic plane won't only yield historic images of the star, but it'll also hopefully help scientists better understand and predict solar activity.

"The poles are particularly important for us to be able to model more accurately," said Holly Gilbert, NASA project scientist for the mission at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "For forecasting space weather events, we need a pretty accurate model of the global magnetic field of the Sun."

To ascend the ecliptic plane by the end of 2021, the Solar Orbiter will fly by Earth and Venus several times, using the two planets' gravity to slingshot itself into an elliptical orbit. The only other spacecraft to travel outside the ecliptic plane was Ulysses, launched in 1990. But Ulysses had no camera. It carried only situ instruments, which measure the environment immediately around the spacecraft.

Solar Orbiter is equipped with 10 instruments: four situ and six remote-sensing tools that can "see" the Sun from afar. (Because these instruments are extremely sensitive, the orbiter was stored in an ultra-clean room before launch; anyone who came near it was required to wear booties and a "bunny suit" to prevent contamination.) The spacecraft aims to travel closer to the star than any other Sun-facing camera. That requires surviving extreme temperatures — both hot and cold.

Solar surface

NSO/AURA/NSF

"Although Solar Orbiter goes quite close to the Sun, it also goes quite far away," Anne Pacros, the payload manager at the European Space Agency's, or ESA's, European Space Research and Technology Centre in the Netherlands, told NASA. "We have to survive both high heat and extreme cold."

To protect its instruments as it comes within 26 million miles of the Sun, Solar Orbiter is equipped with a 324-pound heat shield that can withstand temperatures up to 970 degrees Fahrenheit, which is about one-tenth as hot as the solar surface.

"Five of the remote-sensing instruments look at the Sun through peepholes in that heat shield; one observes the solar wind out to the side," NASA wrote.

Solar Orbiter will work in tandem with the Parker probe.

"As Parker samples solar particles up close, Solar Orbiter will capture imagery from farther away, contextualizing the observations," NASA wrote. "The two spacecraft will also occasionally align to measure the same magnetic field lines or streams of solar wind at different times."

Solar Orbiter is scheduled to turn on its telescopes in November 2021.

"It will capture the imagination like science fiction does and inspire the next generation of scientists and space explorers," Yannis Zouganelis, ESA's deputy project scientist for Solar Orbiter, told The Guardian.

Hulu's original movie "Palm Springs" is the comedy we needed this summer

Andy Samberg and Cristin Milioti get stuck in an infinite wedding time loop.

Gear
  • Two wedding guests discover they're trapped in an infinite time loop, waking up in Palm Springs over and over and over.
  • As the reality of their situation sets in, Nyles and Sarah decide to enjoy the repetitive awakenings.
  • The film is perfectly timed for a world sheltering at home during a pandemic.
Keep reading Show less

Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Surprising Science

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.

Keep reading Show less

Our ‘little brain’ turns out to be pretty big

The multifaceted cerebellum is large — it's just tightly folded.

Image source: Sereno, et al
Mind & Brain
  • A powerful MRI combined with modeling software results in a totally new view of the human cerebellum.
  • The so-called 'little brain' is nearly 80% the size of the cerebral cortex when it's unfolded.
  • This part of the brain is associated with a lot of things, and a new virtual map is suitably chaotic and complex.

Just under our brain's cortex and close to our brain stem sits the cerebellum, also known as the "little brain." It's an organ many animals have, and we're still learning what it does in humans. It's long been thought to be involved in sensory input and motor control, but recent studies suggests it also plays a role in a lot of other things, including emotion, thought, and pain. After all, about half of the brain's neurons reside there. But it's so small. Except it's not, according to a new study from San Diego State University (SDSU) published in PNAS (Proceedings of the National Academy of Sciences).

A neural crêpe

A new imaging study led by psychology professor and cognitive neuroscientist Martin Sereno of the SDSU MRI Imaging Center reveals that the cerebellum is actually an intricately folded organ that has a surface area equal in size to 78 percent of the cerebral cortex. Sereno, a pioneer in MRI brain imaging, collaborated with other experts from the U.K., Canada, and the Netherlands.

So what does it look like? Unfolded, the cerebellum is reminiscent of a crêpe, according to Sereno, about four inches wide and three feet long.

The team didn't physically unfold a cerebellum in their research. Instead, they worked with brain scans from a 9.4 Tesla MRI machine, and virtually unfolded and mapped the organ. Custom software was developed for the project, based on the open-source FreeSurfer app developed by Sereno and others. Their model allowed the scientists to unpack the virtual cerebellum down to each individual fold, or "folia."

Study's cross-sections of a folded cerebellum

Image source: Sereno, et al.

A complicated map

Sereno tells SDSU NewsCenter that "Until now we only had crude models of what it looked like. We now have a complete map or surface representation of the cerebellum, much like cities, counties, and states."

That map is a bit surprising, too, in that regions associated with different functions are scattered across the organ in peculiar ways, unlike the cortex where it's all pretty orderly. "You get a little chunk of the lip, next to a chunk of the shoulder or face, like jumbled puzzle pieces," says Sereno. This may have to do with the fact that when the cerebellum is folded, its elements line up differently than they do when the organ is unfolded.

It seems the folded structure of the cerebellum is a configuration that facilitates access to information coming from places all over the body. Sereno says, "Now that we have the first high resolution base map of the human cerebellum, there are many possibilities for researchers to start filling in what is certain to be a complex quilt of inputs, from many different parts of the cerebral cortex in more detail than ever before."

This makes sense if the cerebellum is involved in highly complex, advanced cognitive functions, such as handling language or performing abstract reasoning as scientists suspect. "When you think of the cognition required to write a scientific paper or explain a concept," says Sereno, "you have to pull in information from many different sources. And that's just how the cerebellum is set up."

Bigger and bigger

The study also suggests that the large size of their virtual human cerebellum is likely to be related to the sheer number of tasks with which the organ is involved in the complex human brain. The macaque cerebellum that the team analyzed, for example, amounts to just 30 percent the size of the animal's cortex.

"The fact that [the cerebellum] has such a large surface area speaks to the evolution of distinctively human behaviors and cognition," says Sereno. "It has expanded so much that the folding patterns are very complex."

As the study says, "Rather than coordinating sensory signals to execute expert physical movements, parts of the cerebellum may have been extended in humans to help coordinate fictive 'conceptual movements,' such as rapidly mentally rearranging a movement plan — or, in the fullness of time, perhaps even a mathematical equation."

Sereno concludes, "The 'little brain' is quite the jack of all trades. Mapping the cerebellum will be an interesting new frontier for the next decade."

Economists show how welfare programs can turn a "profit"

What happens if we consider welfare programs as investments?

A homeless man faces Wall Street

Spencer Platt/Getty Images
Politics & Current Affairs
  • A recently published study suggests that some welfare programs more than pay for themselves.
  • It is one of the first major reviews of welfare programs to measure so many by a single metric.
  • The findings will likely inform future welfare reform and encourage debate on how to grade success.
Keep reading Show less
Videos

Unhappy at work? How to find meaning and maintain your mental health

Finding a balance between job satisfaction, money, and lifestyle is not easy.

Scroll down to load more…
Quantcast