Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

New bandages turn color to identify an infected wound

Smart bandages quickly identify antibiotic-resistant bacteria, and normal bacteria, in owies.

Image source: Di Studio/Shutterstock/Big Think
  • Judicious use of drugs for resistant bacteria requires time- and money-consuming tests until now.
  • New smart bandages turn red for resistant bacteria and yellow for antibiotic-sensitive bacteria.
  • The bandages also promote healing with the application of UV light.

The growing incidence of antibiotic-resistant bacteria was already a worrying problem before we all started washing our hands with anti-bacterial soaps in response to SARS-CoV-2. While necessary, we may also have provided even more bacteria the opportunity to develop resistance. Such uncooperative bacteria can often be treated, but before they can, they have to first be identified as antibiotic-resistant — each time the precious meds capable of defeating such bacteria are deployed, we risk bacteria developing resistance to them. This would obviously render them useless, and so they're administered only sparingly to bacteria that have tested as resistant. This testing takes time, and can be expensive.

Researchers at the Chinese Academy of Sciences, Changchun, Jilin province have a better idea: smart bandages that change color to indicate the nature of bacteria they cover. The study describing their research his published in ACS Central Science.

The idea behind the bandages

colored liquids being poured into beaker

Image source: Alex Kondratiev/Unsplash

The smart coverings work by leveraging the chemistry of bacterial infections. Integrated into each covering is a metal organic framework (MOF), a structure that allows scientists to embed a few key chemicals in the bandages.

The bandages contain a chemical called nitrocefin that breaks down in the presence of the enzyme β-lactamase — β-lactamase is the enzyme that resistant bacteria produce and use to neutralize antibiotics. It's essentially the chemical source of antibiotic resistance. When the nitrocefin interacts with β-lactamase, it breaks down and turns red — as does the bandage— signifying the presence of an antibiotic-resistant bacteria.

For detecting normal, antibiotic-sensitive bacteria, the bandages leverage the fact that a bacterial infection on your skin causes a reduction in its pH, making the skin more acidic. Each smart bandage contains a chemical called bromophenol blue, and when it encounters a more acidic environment, it turns yellow. Thus, when a smart bandage turns yellow, it's telling you that bacteria is present, but that it's antibiotic-sensitive.

If there's no infection, the covering remains its original green color.

Tests and cures

fluorescent light above mirror

Image source: Khamkhlai Thanet/Shutterstock

The bandages have so far been tested on mice who were infected with one of two different strains of E. Coli bacteria, one antibiotic-sensitive, and one antibiotic-resistant. The smart coverings over the mice's wounds behaved as designed, turning the hoped-for colors over the course of a day or two. After some tweaking, that time — and the identification of bacteria — was reduced to just 2-4 hours.

An additional feature is that the design of their MOF causes UV light shined on them to produce reactive oxygen species (ROS) that puncture the protective membranes surrounding the bacterial cells. This restores their susceptibility to standard antibiotics, meaning that the bandages are both diagnostic and curative.

Given the construction simplicity of the bandages, the researchers are hopeful that they can be easily manufactured at scale to join the fight against antibiotic-resistant bacteria, which is currently credited with 700,000 deaths annually.

Being able to quickly identify resistant bacteria can help prolong the effectiveness of available treatments. As the study puts it, "Because of the "auto-obsolescence" of antibacterial treatments, it is an important issue in the current antibacterial field how to rationally use of existing antibiotics and overcome tolerance."

LIVE EVENT | Radical innovation: Unlocking the future of human invention

Innovation in manufacturing has crawled since the 1950s. That's about to speed up.

Big Think LIVE

Add event to calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo


Keep reading Show less

NASA's idea for making food from thin air just became a reality — it could feed billions

Here's why you might eat greenhouse gases in the future.

Jordane Mathieu on Unsplash
Technology & Innovation
  • The company's protein powder, "Solein," is similar in form and taste to wheat flour.
  • Based on a concept developed by NASA, the product has wide potential as a carbon-neutral source of protein.
  • The man-made "meat" industry just got even more interesting.
Keep reading Show less

Navy SEALs: How to build a warrior mindset

SEAL training is the ultimate test of both mental and physical strength.

Videos
  • The fact that U.S. Navy SEALs endure very rigorous training before entering the field is common knowledge, but just what happens at those facilities is less often discussed. In this video, former SEALs Brent Gleeson, David Goggins, and Eric Greitens (as well as authors Jesse Itzler and Jamie Wheal) talk about how the 18-month program is designed to build elite, disciplined operatives with immense mental toughness and resilience.
  • Wheal dives into the cutting-edge technology and science that the navy uses to prepare these individuals. Itzler shares his experience meeting and briefly living with Goggins (who was also an Army Ranger) and the things he learned about pushing past perceived limits.
  • Goggins dives into why you should leave your comfort zone, introduces the 40 percent rule, and explains why the biggest battle we all face is the one in our own minds. "Usually whatever's in front of you isn't as big as you make it out to be," says the SEAL turned motivational speaker. "We start to make these very small things enormous because we allow our minds to take control and go away from us. We have to regain control of our mind."
Keep reading Show less

How COVID-19 will change the way we design our homes

Pandemic-inspired housing innovation will collide with techno-acceleration.

Maja Hitij/Getty Images
Coronavirus
COVID-19 is confounding planning for basic human needs, including shelter.
Keep reading Show less
Scroll down to load more…
Quantcast