Want to help design a moon robot? NASA needs you.

A NASA-sponsored competition asks participants to improve the design of a bucket drum for moon excavation.

Want to help design a moon robot? NASA needs you.
  • NASA wants your help redesigning the bucket drum system for its RASSOR excavator.
  • The Moon's weaker gravity and the excavator's light weight pose unique design challenges.
  • RASSOR will one day excavate regolith so it can be processed into the resources necessary for sustainable lunar exploration.

Are you an engineer, designer, manufacturer, or STEM student? Maybe just someone with a healthy predilection for bucket drums? Then NASA wants to hear from you.

NASA's Lunar Surface Innovation Initiative (LSII) is sponsoring a challenge hosted by GrabCAD to garner ideas for a bucket drum system to be equipped on the Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator. LSII is a technology development portfolio aimed at empowering human-robotic exploration of the Moon and, one day, Mars.

Designing on the RASSOR's edge

RASSOR 2.0 excavator

RASSOR 2.0 being tested along with the MARCO POLO/Mars Pathfinder, an ISRU propellant production technology, at the Kennedy Space Center, Florida.

(Photo: NASA)

The RASSOR excavator—a "tele-operated mobile robotic platform"—is being iterated at NASA Kennedy Space Center. Its current 2.0 design looks like it was built with a life-size K'NEX set. Four giant tread wheels surround the main platform, which has two arms coming out from either side.

At the end of each arm is a giant bucket drum with hollow cylinders for scoping up regolith, the layer of rocky material that covers bedrock. As the bucket drums on each arm counter-rotate, baffles within trap the regolith to prevent it from falling out as the excavator roams. When RASSOR reaches its deposit site, the drums reverse direction to spill their contents.

NASA's challenge for participants is to design a better shape for the RASSOR's bucket drums and interior baffling. The drums must be able to hold regolith at 50 percent capacity without spillage. That's easier said than done, and for most people, it likely didn't sound that easy in the first.

"With RASSOR, we're no longer relying on the traction or the weight of the robot," Jason Schuler, a robotics engineer in the Exploration Research and Technology Programs at Kennedy Space Center, told CNN. "RASSOR is excavation and transportation all in one, but we'd like to improve the design.

The reason the RASSOR can't rely on traction or weight has to do with the Moon's weaker gravity. On Earth, an excavator's weight and traction can be used to overcome soil's resistive force. The Moon's gravity is only 17 percent that of Earth's, so the RASSOR cannot rely on reaction force to penetrate the regolith, especially at depths with high density. For this reason, it must incorporate near "net-zero reaction force."

The RASSOR must also be much lighter than a typical excavator while maintaining the durability and reliability required to work in such an extreme environment. With space transportation costs at about $4,000 a pound, any pound shed or square foot condensed from the design equals thousands of dollars saved.

Another trip to the Moon

The RASSOR will be part of NASA's Artemis program. Through Artemis, NASA hopes to put the first woman and thirteenth man on the Moon—the first people to revisit to the lunar surface in more than 40 years. Once there, the goal is to establish sustained Moon exploration by 2028, a proving ground for the technology that may one day send astronauts to Mars.

To establish sustained exploration, NASA must practice in-situ resource utilization (ISRU). This practice allows astronauts to generate much-needed resources using local materials. The farther astronauts travel from Earth, the more necessary ISRU becomes to maintaining sustainable, human-friendly habitats.

RASSOR will travel to the Moon as a precursor to human moonflight. Coupled with a lander sporting a processing plant, the robot excavator will journey onto the Moon's surface to excavate regolith. It will deposit that regolith at the lander for processing.

Regolith can be processed into valuable resources such as water, propellant, and breathable air. It also contains metals that could be used to craft structures for the astronaut's labs and habitats.

NASA is working toward launching Artemis 1—an uncrewed flight to test the Orion spacecraft—later this year, but had to suspend work on the rocket due to the COVID-19 threat.

Challenge accepted

The GrabCAD challenge has a prize pool totaling $7,000. The first-place proposal will be awarded $3,000, with monetary prizes offered for second to fifth place. There is also the satisfaction and bragging rights of knowing your design will make sustained Moon exploration a reality.

The challenge ends on April 20, 2020. Finalists will be announced on April 27, and winners will be announced on May 4. To learn more, visit GrabCAD's website.

How New York's largest hospital system is predicting COVID-19 spikes

Northwell Health is using insights from website traffic to forecast COVID-19 hospitalizations two weeks in the future.

Credit: Getty Images
Sponsored by Northwell Health
  • The machine-learning algorithm works by analyzing the online behavior of visitors to the Northwell Health website and comparing that data to future COVID-19 hospitalizations.
  • The tool, which uses anonymized data, has so far predicted hospitalizations with an accuracy rate of 80 percent.
  • Machine-learning tools are helping health-care professionals worldwide better constrain and treat COVID-19.
Keep reading Show less

Listen: Scientists re-create voice of 3,000-year-old Egyptian mummy

Scientists used CT scanning and 3D-printing technology to re-create the voice of Nesyamun, an ancient Egyptian priest.

Surprising Science
  • Scientists printed a 3D replica of the vocal tract of Nesyamun, an Egyptian priest whose mummified corpse has been on display in the UK for two centuries.
  • With the help of an electronic device, the reproduced voice is able to "speak" a vowel noise.
  • The team behind the "Voices of the Past" project suggest reproducing ancient voices could make museum experiences more dynamic.
Keep reading Show less

Dark matter axions possibly found near Magnificent 7 neutron stars

A new study proposes mysterious axions may be found in X-rays coming from a cluster of neutron stars.

A rendering of the XMM-Newton (X-ray multi-mirror mission) space telescope.

Credit: D. Ducros; ESA/XMM-Newton, CC BY-SA 3.0 IGO
Surprising Science
  • A study led by Berkeley Lab suggests axions may be present near neutron stars known as the Magnificent Seven.
  • The axions, theorized fundamental particles, could be found in the high-energy X-rays emitted from the stars.
  • Axions have yet to be observed directly and may be responsible for the elusive dark matter.
  • Keep reading Show less

    Put on a happy face? “Deep acting” associated with improved work life

    New research suggests you can't fake your emotional state to improve your work life — you have to feel it.

    Credit: Columbia Pictures
    Personal Growth
  • Deep acting is the work strategy of regulating your emotions to match a desired state.
  • New research suggests that deep acting reduces fatigue, improves trust, and advances goal progress over other regulation strategies.
  • Further research suggests learning to attune our emotions for deep acting is a beneficial work-life strategy.
  • Keep reading Show less
    Surprising Science

    World's oldest work of art found in a hidden Indonesian valley

    Archaeologists discover a cave painting of a wild pig that is now the world's oldest dated work of representational art.

    Scroll down to load more…
    Quantcast