MIT launches a fleet of Transformer boats

Clusters of bot boats may offer cities dynamic solutions to rising waters.

MIT Transformer boats
Image source: chingyunsong/Riccardo Arata /Shutterstock/Big Think
  • Amsterdam is working with MIT to develop a way to move activity from the streets to the canals.
  • A paper announces that the boats can now assemble themselves into various shapes.
  • Flexible urban infrastructural systems such as this are likely to grow in importance.

Amsterdam has a problem with its streets — they're packed. They also have a potential solution to this congestion: Their 165 canals. The city's Amsterdam Institute for Advanced Metropolitan Solutions (AMS) has teamed up with MIT's Senseable City Lab in a 5-year project to develop intelligent, interlocking vessels that can shift some of that activity from land to sea. These Roboats keep evolving, and now MIT has announced that they're able to shapeshift as they navigate the city's also-crowded and winding canals and to self-assemble into floating structures.

Roboat

Image source: MIT and AMS Institute

Dynamic urban infrastructures for the future

While the Roboat project is currently focused on Amsterdam's congestion, as coastal waters rise around the world, other cities will require this kind of enhanced flexibility in meeting the needs of their populations. Roads will submerge, waterways will grow, everything will shift around, and developing dynamic infrastructure systems will take on a new urgency as conditions evolve too quickly to be adequately addressed by long-term, fixed, traditional construction projects.

The first major mission for the Roboats will be the "roundAround," a moving "bridge" built of connected autonomous boats circling the canal and ferrying people between the NEMO Science Museum in Amsterdam's city center and the rapidly growing Marineterrein district. Currently, it takes about 10 minutes to walk a kilometer around the waterway to travel between the two locations, but the bridge will shorten that time to less than 2 minutes.

One aspect of the roundAround challenge is getting the autonomous Roboat units to play nice with obstacles and each other as they self-navigate. Another aspect is getting travelers safely onto and off the vessels' ramps. The designers expect to get plenty of feedback from passengers that will inform refinement of the system going forward.

NEMO Science Museum

The NEMO Science Museum, with an illustration of the roundAround system.

Image source: MIT/AMS

How Roboats work

The Roboat project involves sets of interconnected Roboat structures, each of which is a "connected-vessel platform," or a CVP. A CVP is comprised of two types of Roboats: A coordinator — the CVP's brain — and a number of workers. Multiple CVPs can be assembled to make larger structures.

Both types of Roboats are outfitted with four propellers, a wireless-capable microcontroller, automated latching mechanisms, and a sensing system with which it can communicate with other vessels.

The coordinators use GPS for navigation, as well as an IMU (inertial measurement unit) with which they can plan the CVPs' trajectory, orientation, and speed. In just a little over 100 milliseconds, a coordinator identifies collision-free regions to work out the shortest safe route. It also estimates its own final position and wirelessly commands its workers into the desired configuration around itself.

The new paper documents the capabilities of low-cost, 3-D-printed, 1/4 scale boats operating in an MIT pool. The boats demonstrated their capabilities by starting in one shape — side-to-side straight lines and squares — and flawlessly separating and reforming into rectangles, "L" shapes, and end-to-end lines. It's a promising start: "A set of boats can come together to form linear shapes as pop-up bridges, if we need to send materials or people from one side of a canal to the other. Or, we can create pop-up wider platforms for flower or food markets," says co-author Daniela Rus.

Roboats

An illustration of the Roboat concept in action.

Image source: AMS

CT scans of shark intestines find Nikola Tesla’s one-way valve

Evolution proves to be just about as ingenious as Nikola Tesla

Credit: Gerald Schömbs / Unsplash
Surprising Science
  • For the first time, scientists developed 3D scans of shark intestines to learn how they digest what they eat.
  • The scans reveal an intestinal structure that looks awfully familiar — it looks like a Tesla valve.
  • The structure may allow sharks to better survive long breaks between feasts.
Keep reading Show less

American imperialism: fat-shaming Uncle Sam

Opponents of 19th-century American imperialism were not above body-shaming the personification of the U.S. government.

Uncle Sam's growth from toddler to giant of the world stage.

Credit: Bill of Rights Institute / Public domain
Strange Maps
  • In the years before 1900, the United States was experiencing a spectacular spurt of growth.
  • Not everyone approved: many feared continued expansionism would lead to American imperialism.
  • To illustrate the threat, Uncle Sam was depicted as dangerously or comically fat.
Keep reading Show less

Why information is central to physics and the universe itself

Information may not seem like something physical, yet it has become a central concern for physicists. A wonderful new book explores the importance of the "dataome" for the physical, biological, and human worlds.

Credit: agsandrew via Adobe Stock
13-8
  • The most important current topic in physics relates to a subject that hardly seems physical at all — information, which is central to thermodynamics and perhaps the universe itself.
  • The "dataome" is the way human beings have been externalizing information about ourselves and the world since we first began making paintings on cave walls.
  • The dataome is vast and growing everyday, sucking up an ever increasing share of the energy humans produce.
Keep reading Show less
Surprising Science

Dogs know when people are lying

A new study tested to what extent dogs can sense human deception.

Quantcast