New 'swallowable needles' could deliver insulin as a pill

Diabetics have to endure constant injections on a daily basis, but this new device could make staying alive easier.

  • Insulin breaks down in the stomach, so diabetics haven't had the option of taking insulin in a pill.
  • A new device whose design is inspired by tortoises can be swallowed and inject diabetics with insulin from the inside.
  • Though it's still a prototype, the device is an exciting development for delivering insulin and other drugs.

No matter the delivery mechanism, consistently getting a dose of insulin is inconvenient, complicated, and non-negotiable. The unfortunate nature of insulin is that it must enter the bloodstream—if one were to swallow insulin as a pill, for instance, the stomach's enzymes would break the compound down, rendering it useless. So, diabetics must resort to constant injections. However, every new advancement in insulin administration technology has the potential to vastly improve the onerous task of staying alive for a diabetic. This is why a new paper published in Science is so exciting.

A team of researchers has developed a prototype for what amounts to insulin in a pill. But, since insulin can't persist in the stomach, the new device is more accurately described as a swallowable needle. That may sound terrifying, but their research thus far suggests that it's safe, effective, and painless. SOMA—or the self-orienting millimeter-scale applicator—is a tiny device about 1.7 mm tall. When swallowed, it flips and turns around in the stomach, landing in such a way that a biodegradable needle can be deployed into the stomach lining. Because there aren't that many sharp pain receptors in the stomach, this needle causes no pain. And SOMA is small enough that once it's done its job, it easily passes through the rest of the digestive tract.

How does it work?

Like many well-designed products, SOMA took its inspiration from nature; specifically, the leopard tortoise. Tortoises in general have a big problem: Once they flip onto their backs, they have a lot of trouble getting back upright. Stuck upside down, they're liable to be eaten by predators or cooked in the hot sun. Some tortoises, like the leopard tortoise, have evolved a unique shape that makes orienting themselves easier. Their bottom half is fairly flat, but the top of their shells arches up in a sharp, dome-like shape. This is the same design that SOMA uses—it's shaped like a leopard tortoise's shell or an acorn so that it lands on its bottom, where the needle emerges. Furthermore, the top half of the device is made out of a lightweight, biodegradable polyester, while the bottom half is made of heavier stainless steel, encouraging it to flip in the necessary direction.

Abramson et al., 2019

A leopard tortoise, whose shell shape inspired the design, and a cross section of the device.

To test the device, the researchers fed SOMA to pigs, whose physiology resembles that of humans in many respects. In these trials, the researchers made a needle of biodegradable polymer, with a tip made from insulin. Once injected, the insulin performed as expected, encouraging the cellular uptake of glucose. Since these pigs weren't diabetic, though, this wasn't exactly a pleasant experience for them—they became hypoglycemic, where their blood sugar levels dropped too low. Before you worry too much, the researchers did rescue them with a quick dose of dextrose, bringing their blood sugar back to normal.

What's next?

While insulin was used for testing purposes and is clearly an exciting use case for this technology, it's not the only drug SOMA could be used for. In theory, any drug that can be cast into a needle tip and administered safely and stably through stomach lining could be used.

While its certainly an innovative technology, it's important to remember that this is just a prototype. How it might work in humans, especially diabetics who must consistently take insulin, is unclear. The repeated internal injections could be unsafe. In addition, the size of the device and the thickness of the stomach lining limit the maximum dosage SOMA can deliver, potentially rendering it ineffective for certain medications. But despite these possible limitations, SOMA's promising prototype trials suggest that a drug-delivery system like it could be put into use in the future.

Big Think Edge
  • The meaning of the word 'confidence' seems obvious. But it's not the same as self-esteem.
  • Confidence isn't just a feeling on your inside. It comes from taking action in the world.
  • Join Big Think Edge today and learn how to achieve more confidence when and where it really matters.

To boost your self-esteem, write about chapters of your life

If you're lacking confidence and feel like you could benefit from an ego boost, try writing your life story.

Personal Growth

In truth, so much of what happens to us in life is random – we are pawns at the mercy of Lady Luck. To take ownership of our experiences and exert a feeling of control over our future, we tell stories about ourselves that weave meaning and continuity into our personal identity.

Keep reading Show less

Active ingredient in Roundup found in 95% of studied beers and wines

The controversial herbicide is everywhere, apparently.

(MsMaria/Shutterstock)
Surprising Science
  • U.S. PIRG tested 20 beers and wines, including organics, and found Roundup's active ingredient in almost all of them.
  • A jury on August 2018 awarded a non-Hodgkin's lymphoma victim $289 million in Roundup damages.
  • Bayer/Monsanto says Roundup is totally safe. Others disagree.
Keep reading Show less

Ashes of cat named Pikachu to be launched into space

A space memorial company plans to launch the ashes of "Pikachu," a well-loved Tabby, into space.

GoFundMe/Steve Munt
Culture & Religion
  • Steve Munt, Pikachu's owner, created a GoFundMe page to raise money for the mission.
  • If all goes according to plan, Pikachu will be the second cat to enter space, the first being a French feline named Felicette.
  • It might seem frivolous, but the cat-lovers commenting on Munt's GoFundMe page would likely disagree.
Keep reading Show less