Google’s Sycamore beats top supercomputer to achieve ‘quantum supremacy’

The achievement is an important milestone in quantum computing, Google's scientists said.

Google’s Sycamore beats top supercomputer to achieve ‘quantum supremacy’
Google
  • Sycamore is a quantum computer that Google has spent years developing.
  • Like traditional computers, quantum computers produce binary code, but they do so while utilizing unique phenomena of quantum mechanics.
  • It will likely be years before quantum computing has applications in everyday technology, but the recent achievement is an important proof of concept.


A quantum computer developed by Google achieved "quantum supremacy" after taking 200 seconds to solve a complex problem that the company says would take a supercomputer 10,000 years to solve.

In a blog post published Wednesday, scientists at Google described the achievement as an "important milestone" in quantum computing, one that demonstrates that the company's designs are "going in the right direction." Still, the success of Google's quantum computer, dubbed Sycamore, doesn't mean that we're all going to be switching to quantum computers anytime soon. That's partly because the term "quantum supremacy" is somewhat misleading.

But first, a quick look at how quantum computers function.

How quantum computers differ from traditional computers

Like traditional computers, quantum computers produce binary code to execute computing functions. But instead of using transistors to represent the ones and zeroes, as traditional computers do, quantum computers like Sycamore use quantum bits, or "qubits."

Qubits are extremely tiny pieces of hardware that act like subatomic particles, utilizing quantum phenomena like entanglement, superposition, and interference. Qubits can represent ones and zeroes. But thanks to superposition, qubits are also able to represent multiple states at the same time, meaning they can make calculations much faster than traditional computers. That's what helped Sycamore recently outperform a supercomputer.

Sycamore achieved "quantum supremacy," which occurs when a quantum computer can do something that a traditional computer cannot. To pass this benchmark, Google engineers pit Sycamore against the world's leading supercomputer, Summit, which is housed at Oak Ridge National Laboratory in Tennessee.

"Summit is currently the world's leading supercomputer, capable of carrying out about 200 million billion operations per second," William Oliver, a physicist at the Massachusetts Institute of Technology, wrote in a "News and Views" piece for Nature.

But the contest between Sycamore and Summit involved a highly specific task, one that was specifically designed to give a competitive edge to a quantum computer like Sycamore.

Beating the world's leading supercomputer

The task involved estimating how likely it was that a processor would produce some "bitstrings" more often than others. As you continue to add information to the equation, it becomes exponentially difficult for traditional computers to conduct the calculations. (You can read more about the experiment here.)

"We performed a fixed set of operations that entangles 53 qubits into a complex superposition state," Ben Chiaro, a graduate student researcher in the Martinis Group, which conducted the experiment, told Science Daily. "This superposition state encodes the probability distribution. For the quantum computer, preparing this superposition state is accomplished by applying a sequence of tens of control pulses to each qubit in a matter of microseconds. We can prepare and then sample from this distribution by measuring the qubits a million times in 200 seconds."

"For classical computers, it is much more difficult to compute the outcome of these operations because it requires computing the probability of being in any one of the 2^53 possible states, where the 53 comes from the number of qubits -- the exponential scaling is why people are interested in quantum computing to begin with," Brooks Foxen, another graduate student researcher in the Martinis Group, told Science Daily. "This is done by matrix multiplication, which is expensive for classical computers as the matrices become large."

But the specific nature of this task has led some to question the utility of quantum computers like Sycamore.

"One criticism we've heard a lot is that we cooked up this contrived benchmark problem—[Sycamore] doesn't do anything useful yet," Hartmut Neven, a Google engineering director said at a press event on Wednesday. "That's why we like to compare it to a Sputnik moment. Sputnik didn't do much either. All it did was circle Earth. Yet it was the start of the Space Age."

A proof of concept for quantum computing

Although it could be decades until we see quantum computing powering everyday devices, Sycamore serves as a proof of concept that there exists a form of computing that has the potential to be vastly superior to traditional computing.

"This demonstration of quantum supremacy over today's leading classical algorithms on the world's fastest supercomputers is truly a remarkable achievement and a milestone for quantum computing," Oliver wrote in his piece for Nature. "It experimentally suggests that quantum computers represent a model of computing that is fundamentally different from that of classical computers. It also further combats criticisms about the controllability and viability of quantum computation in an extraordinarily large computational space (containing at least the 253 states used here)."

Live on Thursday: Learn innovation with 3-star Michelin chef Dominique Crenn

Dominique Crenn, the only female chef in America with three Michelin stars, joins Big Think Live this Thursday at 1pm ET.

Big Think LIVE

Add event to your calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo


Keep reading Show less

The world's watersheds, mapped in gorgeous detail

Hungarian cartographer travels the world while mapping its treasures.

Strange Maps
  • Simple idea, stunning result: the world's watersheds in glorious colors.
  • The maps are the work of Hungarian cartographer Robert Szucs.
  • His job: to travel and map the world, one good cause at a time.
Keep reading Show less

Did our early ancestors boil their food in hot springs?

Scientists have found evidence of hot springs near sites where ancient hominids settled, long before the control of fire.

Ryan Pierse/Getty Images
Culture & Religion
Some of the oldest remains of early human ancestors have been unearthed in Olduvai Gorge, a rift valley setting in northern Tanzania where anthropologists have discovered fossils of hominids that existed 1.8 million years ago.
Keep reading Show less

Personal finance: How to save, spend, and think rationally about money

Finances can be a stressor, regardless of tax bracket. Here are tips for making better money decisions.

Videos
  • Whether you have a lot of money or a lot of debt, it matters how you handle your personal finances. A crucial step when it comes to saving is to reassess your relationship with money and to learn to adopt a broader, more logical point of view.
  • In this video, social innovator and activist Vicki Robin, psychologist Daniel Kahneman, Harvard Business School professor Michael Norton, and author Bruce Feiler offer advice on achieving financial independence, learning to control your emotions, spending smarter, and teaching children about money.
  • It all starts with education and understanding. The more you know about how money works, the better you will be at avoiding mistakes and the easier it will be to take control of your financial circumstances.
Keep reading Show less
Scroll down to load more…
Quantcast