New study: Melanin conducts enough electricity to enable implantable electronics

What gives us color now may give rise to our cyborg future.

  • Eumelanin is a mildly conductive type of melanin that produces dark pigmentation in hair, eyes, and skin.
  • Researchers have just found a way to boost its conductivity without adding foreign materials.
  • Eulemanin may be useable as a coating for implanted devices the body won't reject.

We are electrical creatures. Defibrillators jump-start us, for one thing, and electricity plays a part in how we work, down to a cellular level. Eumelanin, a dark pigment from which we get our eye, hair, and skin color, has been understood for nearly 50 years to conduct electricity. For almost as long, scientists have been looking for ways to take advantage of this trait, but eumelanin's conductivity has been too weak to serve any practical purpose beyond its biological role.

Now, however, a multi-discipline team of scientists from Italy — their findings were published in Frontiers in Chemistry on March 26 — have figured out how to boost that conductivity to the point that it may become usable as a coating for medical implants and other devices that human bodies won't reject.

"This is the first [stepping] stone of a long process that now can start," said chemist and lead author Alessandro Pezzella.

What’s been holding eumelanin’s conductivity back

Image source: Roland Mattern / Wikimedia Commons

Other teams have attempted to boost the conductivity of eumelanin by combining it with metals or super-heating it with graphene have helped increase it, but required adding metals and other chemicals the human body would reject.

Pezzella's team wondered if the problem was that the natural molecular structure of eumelanin was too chaotic, and too loosely packed to maintain a strong current. Says Pezzella, "All of the chemical and physical analyses of eumelanin paint the same picture — of electron-sharing molecular sheets, stacked messily together. The answer seemed obvious: Neaten the stacks and align the sheets, so they can all share electrons — then the electricity will flow."

Turning up the heat on eumelanin

They decided to try and achieve this, says co-author and electrical engineer Paolo Tassini, through "basically, heating in a vacuum" to tighten up eumelanin by getting rid of its water and vapor molecules. While water is often an aid to conductivity, in the case or eumelanin, it was suspected it might be holding it back. The process they employed isn't new — it's called "annealing" — and has been used before to boost conductivity in other materials.

Clumps of eumelanin were sealed in a high vacuum and heated to 600° C. Says Tassini, "We heated these eumelanin films — no thicker than a bacterium — under vacuum conditions, from 30 min up to 6 hours. We call the resulting material 'High Vacuum Annealed Eumelanin,' [or] 'HVAE.'"

"The HVAE films were now dark brown and about as thick as a virus," he says.

Pezzella tells phys.org, "The conductivity of the films increased billion-fold to an unprecedented value of over 300 S/cm, after annealing at 600°C for 2 hours." This is still far less than conductivity in metals, but it's now within a useful range.

What’s next for eumelanin

The process Pezzella's team came up with is simple enough that it will be easy to boost eumelanin's conductivity going forward, but that's just a beginning. He hopes to architect a simple-to-handle version of HVAE, perhaps a sheet of it, that will allow others to begin experimenting with using it as a coating for implantable technology. "Further research is needed to fully understand the ionic vs. electronic contributions in eumelanin conductivity," says Pezzella, "which could be key to how eumelanin is used practically in implantable electronics."

Should you defend the free speech rights of neo-Nazis?

Former president of the ACLU Nadine Strossen discusses whether our society should always defend free speech rights, even for groups who would oppose such rights.

Sponsored by Charles Koch Foundation
  • Former ACLU president Nadine Strossen understands that protecting free speech rights isn't always a straightforward proposition.
  • In this video, Strossen describes the reasoning behind why the ACLU defended the free speech rights of neo-Nazis in Skokie, Illinois, 1977.
  • The opinions expressed in this video do not necessarily reflect the views of the Charles Koch Foundation, which encourages the expression of diverse viewpoints within a culture of civil discourse and mutual respect.
Keep reading Show less

Moon mission 2.0: What humanity will learn by going back to the Moon

Going back to the moon will give us fresh insights about the creation of our solar system.

Videos
  • July 2019 marks the 50th anniversary of the moon landing — Apollo 11.
  • Today, we have a strong scientific case for returning to the moon: the original rock samples that we took from the moon revolutionized our view of how Earth and the solar system formed. We could now glean even more insights with fresh, nonchemically-altered samples.
  • NASA plans to send humans to a crater in the South Pole of the moon because it's safer there, and would allow for better communications with people back on Earth.

NASA releases stunning image of ISS crossing in front of the sun

Strangely, the sun showed no sunspots at the time the photo was taken.

Image source: Rainee Colacurcio
Surprising Science
  • The photo shows the International Space Station as it orbits the Earth, as it does every 90 minutes.
  • The photo is remarkable because it offers a glimpse of the star at a time when there were no sunspots.
  • In November, astronauts aboard the ISS plan to grow Española chili pepper plants.
Keep reading Show less

U.S. Air Force warns UFO enthusiasts against storming Area 51

Jokesters and serious Area 51 raiders would be met with military force.

Politics & Current Affairs
  • Facebook joke event to "raid Area 51" has already gained 1,000,000 "going" attendees.
  • The U.S. Air Force has issued an official warning to potential "raiders."
  • If anyone actually tries to storm an American military base, the use of deadly force is authorized.
Keep reading Show less