How the technology behind deepfakes can benefit all of society

Deepfakes are "neither intrinsically good nor evil."

can deepfake technology actually benefit society
Elyse Samuels/The Washington Post via Getty Images

Recent advances in deepfake video technology have led to a rapid increase of such videos in the public domain in the past year.


Face-swapping apps such as Zao, for example, allow users to swap their faces with a celebrity, creating a deepfake video in seconds.

These advances are the result of deep generative modelling, a new technology which allows us to generate duplicates of real faces and create new, and impressively true-to-life images, of people who do not exist.

This new technology has quite rightly raised concerns about privacy and identity. If our faces can be created by an algorithm, would it be possible to replicate even more details of our personal digital identity or attributes like our voice – or even create a true body double?

Indeed, the technology has advanced rapidly from duplicating just faces to entire bodies. Technology companies are concerned and are taking action: Google released 3,000 deepfake videos in the hope of allowing researchers to develop methods of combating malicious content and identifying these more easily.

While questions are rightly being asked about the consequences of deepfake technology, it is important that we do not lose sight of the fact that artificial intelligence (AI) can be used for good, as well as ill. World leaders are concerned with how to develop and apply technologies that genuinely benefit people and planet, and how to engage the whole of society in their development. Creating algorithms in isolation does not allow for the consideration of broader societal concerns to be incorporated into their practical applications.

For example, the development of deep generative models raises new possibilities in healthcare, where we are rightly concerned about protecting the privacy of patients in treatment and ongoing research. With large amounts of real, digital patient data, a single hospital with adequate computational power could create an entirely imaginary population of virtual patients, removing the need to share the data of real patients.

We would also like to see advances in AI lead to new and more efficient ways of diagnosing and treating illness in individuals and populations. The technology could enable researchers to generate true-to-life data to develop and test new ways of diagnosing or monitoring disease without risking breaches in real patient privacy.

These examples in healthcare highlight that AI is an enabling technology that is neither intrinsically good nor evil. Technology like this depends on the context in which we create and use it.

Universities have a critical role to play here. In the UK, universities are leading the world in research and innovation and are focused on making an impact on real-world challenges. At UCL, we recently launched a dedicated UCL Centre for Artificial Intelligence that will be at the forefront of global research into AI. Our academics are working with a broad range of experts and organizations to create new algorithms to support science, innovation and society.

AI must complement and augment human endeavour, not replace it. We need to combine checks and balances that inhibit or prevent inappropriate use of technology while creating the right infrastructure and connections between different experts to ensure we develop technology that helps society thrive.

Reprinted with permission of the World Economic Forum. Read the original article.

A historian identifies the worst year in human history

A Harvard professor's study discovers the worst year to be alive.

The Triumph of Death. 1562.

Credit: Pieter Bruegel the Elder. (Museo del Prado).
Politics & Current Affairs
  • Harvard professor Michael McCormick argues the worst year to be alive was 536 AD.
  • The year was terrible due to cataclysmic eruptions that blocked out the sun and the spread of the plague.
  • 536 ushered in the coldest decade in thousands of years and started a century of economic devastation.
Keep reading Show less

The Einstein-Bohr legacy: can we ever figure out what quantum theory means?

Quantum theory has weird implications. Trying to explain them just makes things weirder.

Credit: dani3315 / 269881579 via Adobe Stock
13-8
  • The weirdness of quantum theory flies in the face of what we experience in our everyday lives.
  • Quantum weirdness quickly created a split in the physics community, each side championed by a giant: Albert Einstein and Niels Bohr.
  • As two recent books espousing opposing views show, the debate still rages on nearly a century afterward. Each "resolution" comes with a high price tag.
Keep reading Show less

Pupil size surprisingly linked to differences in intelligence

Maybe eyes really are windows into the soul — or at least into the brain, as a new study finds.

A woman's eye.

Credit: Adobe stock / Chris Tefme
Surprising Science
  • Researchers find a correlation between pupil size and differences in cognitive ability.
  • The larger the pupil, the higher the intelligence.
  • The explanation for why this happens lies within the brain, but more research is needed.
Keep reading Show less
Politics & Current Affairs

We are all conspiracy theorists

In each of our minds, we draw a demarcation line between beliefs that are reasonable and those that are nonsense. Where do you draw your line?

Quantcast