Cornell creates the world’s tiniest self-folding origami bird

The bird demonstrates cutting-edge technology for devising self-folding nanoscale robots.

Cornell creates the world’s tiniest self-folding origami bird
Credit: Cornell University
  • Scientists at Cornell University have developed a self-folding origami bird that's just 60 microns wide.
  • The bird is just one of many tiny robots roaming Cornell's labs.
  • One day, microscopic robots will be able to autonomously form themselves and get to work in all sort of itty-bitty spaces.

    • Cornell University has just announced what may be the smallest origami bird ever folded. While a typical origami animal is the product of an artist's dexterous hands, the Cornell bird was folded by the strategic application of small electrical voltages. It had to be: The material of which the bird is comprised is just 30 atoms thick.

      Creative expression isn't the point of the university's little avian — its construction previews principles and techniques that will lead to new generations of moving, nano-scaled robots that "can enable smart material design and interaction with the molecular biological world," says Dean Culver of the U.S. Army Combat Capabilities Development Command's Army Research Laboratory, which supported the research.

      According to Cornell's Paul McEuen, "We humans, our defining characteristic is we've learned how to build complex systems and machines at human scales, and at enormous scales as well. But what we haven't learned how to do is build machines at tiny scales. And this is a step in that basic, fundamental evolution in what humans can do, of learning how to construct machines that are as small as cells."

      The lead author of the paper describing the tiny bird is postdoctoral researcher Qingkun Liu. The paper, "Micrometer-Sized Electrically Programmable Shape Memory Actuators for Low-Power Microrobotics," is the cover story of the March 17 issue of the journal Science Robotics.

      A minuscule swarm of helpers

      The project is the result of a collaboration between physical scientist McEeuen and physicist Itai Cohen, both of Cornell's College of Arts and Sciences. It's already resulted in a (very) small herd of nanoscale machines and devices.

      Cohen explains, "We want to have robots that are microscopic but have brains on board. So that means you need to have appendages that are driven by complementary metal-oxide-semiconductor (CMOS) transistors, basically a computer chip on a robot that's 100 microns on a side."

      The idea is that these minuscule workhorses—a metaphor, no nanoscale origami horses yet exist—are released from a wafer, fold themselves into the desired form factor, and then go on about their business. Additional folding would endow them with motion as they work, change shapes to move their limbs and manipulate microscopic objects. The researchers anticipate that these nanobots will eventually be able to achieve similar functionality to their larger brethren.

      Credit: nobeastsofierce/Adobe Stock

      How a tiny robot is made and works

      The project combines materials science with chemistry, since the folding is achieved with the strategic deployment of electrochemical reactions. Liu explains, "At this small scale, it's not like traditional mechanical engineering, but rather chemistry, material science, and mechanical engineering all mixed together."

      "The hard part," says Cohen, "is making the materials that respond to the CMOS circuits. And this is what Qingkun and his colleagues have done with this shape memory actuator that you can drive with voltage and make it hold a bent shape."

      The bots are constructed from a nanometer-thick platinum layer that's coated with a titanium oxide film. Rigid panels of silicon oxide glass are affixed to the platinum. A positive voltage creates oxidation, forcing oxygen atoms into the platinum seams between the glass panels, and forcing platinum atoms out. This causes the platinum to expand, which bends the entire glass-platinum structure to a desired angle.

      Because the oxygen atoms collect to form a barrier, a bend is retained even after the charge is switched off. To undo a fold, a negative charge can be applied that removes the oxygen atoms from the seam, allowing it to relax and unbend.

      This all happens very quickly — a machine can fold itself within just 100 milliseconds. The process is also repeatable. The team reports that a bot can flatten and refold itself thousands of times, and all it takes is a single volt of electricity.

      Artistry after all

      None of this really removes what one might consider the artistry. Working out how and where to apply voltages to effect the desired shape is not a simple thing to do. McEuen says, "One thing that's quite remarkable is that these little tiny layers are only about 30 atoms thick, compared to a sheet of paper, which might be 100,000 atoms thick. So it's an enormous engineering challenge to figure out how to make something like that have the kind of functionalities we want."

      Still, the group is getting quite good at microscopic robotics, and has already been awarded the Guinness World Record for assembling the smallest-ever walking robot. The little 4-legged dude is 40 microns wide and between 40 and 70 microns long. They're angling for a new record with their 60-micron-wide origami bird.

      Says Cohen, "These are major advances over current state-of-the-art devices. We're really in a class of our own."

      Fast superhighway through the Solar System discovered

      Scientists find routes using arches of chaos that can lead to much faster space travel.

      Arches of chaos in space manifolds.

      Courtesy: Nataša Todorović, Di Wu and Aaron Rosengren/Science Advances
      Surprising Science
      • Researchers discovered a route through the Solar System that can allow for much faster spacecraft travel.
      • The path takes advantage of "arches of chaos" within space manifolds.
      • The scientists think this "celestial superhighway" can help humans get to the far reaches of the galaxy.
      Keep reading Show less

      How Apple and Nike have branded your brain

      A new episode of "Your Brain on Money" illuminates the strange world of consumer behavior and explores how brands can wreak havoc on our ability to make rational decisions.

      Apple logo via Adobe Stock
      • Effective branding can not only change how you feel about a company, it can actually change how your brain is wired.
      • Our new series "Your Brain on Money," created in partnership with Million Stories, recently explored the surprising ways brands can affect our behavior.
      • Brands aren't going away. But you can make smarter decisions by slowing down and asking yourself why you're making a particular purchase.
      Keep reading Show less

      How Apple and Nike have branded your brain

      Powerful branding can not only change how you feel about a company, it can actually change how your brain is wired.

      How Apple and Nike have branded your brain
      Sponsored by Singleton
      • Powerful branding can not only change how you feel about a company, it can actually change how your brain is wired.
      • "We love to think of ourselves as rational. That's not how it works," says UPenn professor Americus Reed II about our habits (both conscious and subconscious) of paying more for items based primarily on the brand name. Effective marketing causes the consumer to link brands like Apple and Nike with their own identity, and that strong attachment goes deeper than receipts.
      • Using MRI, professor and neuroscientist Michael Platt and his team were able to see this at play. When reacting to good or bad news about the brand, Samsung users didn't have positive or negative brain responses, yet they did have "reverse empathy" for bad news about Apple. Meanwhile, Apple users showed a "brain empathy response for Apple that was exactly what you'd see in the way you would respond to somebody in your family."
      Keep reading Show less