Matrioshka Brain: How advanced civilizations could reshape reality

Future or extraterrestrial civilizations could create megastructures the size of a solar system.

Matrioshka Brain: How advanced civilizations could reshape reality
  • Advanced civilizations are likely to create megastructures to harness the energy of the stars.
  • These megastructures could be nested, creating "Matrioshka Brains" – the Universe's most powerful supercomputers.
  • Matrioshka Brains could be used to simulate reality and remake the Universe.

Why create a Matrioshka Brain

To some people, like Elon Musk, the troubling thought is that we don't really know whether we live in a "real" or impressively-rendered digital world. What makes the prospect of us living in a simulation more than a tired billionaire's flight of fancy is the possible existence of Matrioshka brains, theoretical megastructures that could harness the power of stars.

To understand how they would work, we need to look very far into the future.

With the advent of scientific thinking, humans discovered a seemingly reliable method for probing the world around us. We learned much about what the world is made of and how to bend some parts of it to our will. But what we learned and developed technologically is likely negligent compared to what's about to come, especially if we project our current rate of progress. One prediction is that the needs of an advanced society for more energy will at some point lead to the creation of megastructures called Dyson Spheres. These would encircle stars like our Sun to harness their energy.

Dyson Spheres

Freeman Dyson, the physicist who came up with the idea of Dyson Spheres saw their possible existence as something to keep in mind when searching for alien life. His 1960 paper "Search for Artificial Stellar Sources of Infra-Red Radiation" advocates looking for unusual emission signatures of hypothetical structures like Dyson Spheres to spot other spacefaring civilizations.

But as inventor Robert Bradbury wrote, Dyson saw his spheres as quite specifically as a place to live. For example, a "layer of habitats for human beings orbiting the Sun between the orbits of Mars and Jupiter." What Bradbury came up with is an extension of that idea - what if a Dyson sphere was turned into a computer, the most powerful machine in the Universe?

"If extraterrestrial intelligent beings exist and have reached a high level of technical development, one by-product of their energy metabolism is likely to be the large-scale conversion of starlight into far-infrared radiation," wrote Freeman Dyson. "It is proposed that a search for sources of infrared radiation should accompany the recently initiated search for interstellar radio communications.

Artist's concept of a Dyson sphere. Credit: Adam Burn.

Bradbury's year million proposal

What Bradbury envisioned in the anthology "Year Million: Science at the Far Edge of Knowledge" is that far in the future, we'd have the technology to create a set of nested shells around a star – each shell essentially being a Dyson Sphere. Because this megastructure would resemble a Russian nested Matryoshka doll, where smaller dolls fit inside larger ones, he called the concept a "Matrioshka Brain". This solar-system-sized machine would be the most powerful computer in the Universe, harvesting all the useful energy from a star, while rendering it "essentially invisible at visible wavelengths".

To work as a giant computer, or the "highest capacity thought machine" as Bradbury wrote, a Matrioshka Brain (MB) would draw power from the star and spread it through the shells. One shell (or sphere) would collect all the energy it could draw from the star and then would pass on the excess to another larger processing shell that would surround it. This would repeat until all the energy was exhausted.

The shells would be made of computronium - a hypothetical material which nears the theoretical limit of computational power. The inner shells would run at a temperature close to the star's while the outer shells would be at the temperature of interstellar space.

If they were built in our solar system, the Matrioshka Brain shells would have orbits ranging from inside Mercury's to outside Neptune's, claimed Bradbury.


How and when we could get a Matrioshka Brain

Needless to stay, the scope of the engineering and resources required for such a project would be tremendous and far beyond what humans can currently muster. One technology mentioned by Bradbury that is actually being created now and can lead to the construction of such immense structures are self-replicating factories. The company Made in Space has been making headway in its implementation and design of 3D printing tech in space, with the ultimate goals of putting factories that build themselves into orbit.

How would you, a superpower civilization that ranks high on the Kardashev scale, use such a computer, which could conceivably have all the power of the Sun at its disposal? Among science fiction aficionados, uses of this hypothetical super-tool, a class B stellar engine, could range from uploading human minds into virtual reality to changing the structure of the universe, as imagined author Charles Stross. The computers could also be used to simulate reality, potentially creating a whole alternate universe. This, of course, leads to the question - how real is our current universe?

What if the whole world around you was just a very good simulation? One that engages all your senses, feeding you information about supposed smells, sights and sounds. But, ultimately, it's a computer program that's running and none of the things you think you are encountering are actually there. And what's the difference if the simulation is so amazingly realistic?

The mere prospect of Matrioshka Brains makes these questions have real potency. For what it's worth, Bradbury predicted that if current trends (circa 2000) were projected, humans would be able to build such a machine brain by 2250. He thought it would require most of the silicon from the planet planet Venus as raw material. Even so, the first MB would have the "thought capacity in excess of a million times the thought capacity of the 6 billion+ people," wrote Bradbury.

For more on Matrioshka Brains, check out Bradbury's paper on how to build one.

A landslide is imminent and so is its tsunami

An open letter predicts that a massive wall of rock is about to plunge into Barry Arm Fjord in Alaska.

Image source: Christian Zimmerman/USGS/Big Think
Surprising Science
  • A remote area visited by tourists and cruises, and home to fishing villages, is about to be visited by a devastating tsunami.
  • A wall of rock exposed by a receding glacier is about crash into the waters below.
  • Glaciers hold such areas together — and when they're gone, bad stuff can be left behind.

The Barry Glacier gives its name to Alaska's Barry Arm Fjord, and a new open letter forecasts trouble ahead.

Thanks to global warming, the glacier has been retreating, so far removing two-thirds of its support for a steep mile-long slope, or scarp, containing perhaps 500 million cubic meters of material. (Think the Hoover Dam times several hundred.) The slope has been moving slowly since 1957, but scientists say it's become an avalanche waiting to happen, maybe within the next year, and likely within 20. When it does come crashing down into the fjord, it could set in motion a frightening tsunami overwhelming the fjord's normally peaceful waters .

"It could happen anytime, but the risk just goes way up as this glacier recedes," says hydrologist Anna Liljedahl of Woods Hole, one of the signatories to the letter.

The Barry Arm Fjord

Camping on the fjord's Black Sand Beach

Image source: Matt Zimmerman

The Barry Arm Fjord is a stretch of water between the Harriman Fjord and the Port Wills Fjord, located at the northwest corner of the well-known Prince William Sound. It's a beautiful area, home to a few hundred people supporting the local fishing industry, and it's also a popular destination for tourists — its Black Sand Beach is one of Alaska's most scenic — and cruise ships.

Not Alaska’s first watery rodeo, but likely the biggest

Image source: whrc.org

There have been at least two similar events in the state's recent history, though not on such a massive scale. On July 9, 1958, an earthquake nearby caused 40 million cubic yards of rock to suddenly slide 2,000 feet down into Lituya Bay, producing a tsunami whose peak waves reportedly reached 1,720 feet in height. By the time the wall of water reached the mouth of the bay, it was still 75 feet high. At Taan Fjord in 2015, a landslide caused a tsunami that crested at 600 feet. Both of these events thankfully occurred in sparsely populated areas, so few fatalities occurred.

The Barry Arm event will be larger than either of these by far.

"This is an enormous slope — the mass that could fail weighs over a billion tonnes," said geologist Dave Petley, speaking to Earther. "The internal structure of that rock mass, which will determine whether it collapses, is very complex. At the moment we don't know enough about it to be able to forecast its future behavior."

Outside of Alaska, on the west coast of Greenland, a landslide-produced tsunami towered 300 feet high, obliterating a fishing village in its path.

What the letter predicts for Barry Arm Fjord

Moving slowly at first...

Image source: whrc.org

"The effects would be especially severe near where the landslide enters the water at the head of Barry Arm. Additionally, areas of shallow water, or low-lying land near the shore, would be in danger even further from the source. A minor failure may not produce significant impacts beyond the inner parts of the fiord, while a complete failure could be destructive throughout Barry Arm, Harriman Fiord, and parts of Port Wells. Our initial results show complex impacts further from the landslide than Barry Arm, with over 30 foot waves in some distant bays, including Whittier."

The discovery of the impeding landslide began with an observation by the sister of geologist Hig Higman of Ground Truth, an organization in Seldovia, Alaska. Artist Valisa Higman was vacationing in the area and sent her brother some photos of worrying fractures she noticed in the slope, taken while she was on a boat cruising the fjord.

Higman confirmed his sister's hunch via available satellite imagery and, digging deeper, found that between 2009 and 2015 the slope had moved 600 feet downhill, leaving a prominent scar.

Ohio State's Chunli Dai unearthed a connection between the movement and the receding of the Barry Glacier. Comparison of the Barry Arm slope with other similar areas, combined with computer modeling of the possible resulting tsunamis, led to the publication of the group's letter.

While the full group of signatories from 14 organizations and institutions has only been working on the situation for a month, the implications were immediately clear. The signers include experts from Ohio State University, the University of Southern California, and the Anchorage and Fairbanks campuses of the University of Alaska.

Once informed of the open letter's contents, the Alaska's Department of Natural Resources immediately released a warning that "an increasingly likely landslide could generate a wave with devastating effects on fishermen and recreationalists."

How do you prepare for something like this?

Image source: whrc.org

The obvious question is what can be done to prepare for the landslide and tsunami? For one thing, there's more to understand about the upcoming event, and the researchers lay out their plan in the letter:

"To inform and refine hazard mitigation efforts, we would like to pursue several lines of investigation: Detect changes in the slope that might forewarn of a landslide, better understand what could trigger a landslide, and refine tsunami model projections. By mapping the landslide and nearby terrain, both above and below sea level, we can more accurately determine the basic physical dimensions of the landslide. This can be paired with GPS and seismic measurements made over time to see how the slope responds to changes in the glacier and to events like rainstorms and earthquakes. Field and satellite data can support near-real time hazard monitoring, while computer models of landslide and tsunami scenarios can help identify specific places that are most at risk."

In the letter, the authors reached out to those living in and visiting the area, asking, "What specific questions are most important to you?" and "What could be done to reduce the danger to people who want to visit or work in Barry Arm?" They also invited locals to let them know about any changes, including even small rock-falls and landslides.

Your genetics influence how resilient you are to the cold

What makes some people more likely to shiver than others?

KIRILL KUDRYAVTSEV/AFP via Getty Images
Surprising Science

Some people just aren't bothered by the cold, no matter how low the temperature dips. And the reason for this may be in a person's genes.

Keep reading Show less

Harvard study finds perfect blend of fruits and vegetables to lower risk of death

Eating veggies is good for you. Now we can stop debating how much we should eat.

Credit: Pixabay
Surprising Science
  • A massive new study confirms that five servings of fruit and veggies a day can lower the risk of death.
  • The maximum benefit is found at two servings of fruit and three of veggies—anything more offers no extra benefit according to the researchers.
  • Not all fruits and veggies are equal. Leafy greens are better for you than starchy corn and potatoes.
Keep reading Show less
Quantcast