Sound could replace lasers in surgery

Moving from HOT to HAT, a dazzling new acoustic technology.

  • Scientists announce the ability to simultaneously manipulate individual levitated objects.
  • Using high-frequency sound waves may provide a safer alternative to laser microsurgery.
  • Video of the research looks like a cartoon, but it's all real.

For a while now, scientists have presented demonstrations of sound's ability to levitate and move suspended particles. It's pretty cool stuff, and you can find lots of amazing videos showing intriguing patterns made with acoustic waves. Now, though, mechanical engineers Asier Marzo of Spain's Universidad Publica De Navarra and Bruce Drinkwater of the UK's University of Bristol have published research in which they demonstrate, for the first time, the ability to independently move particles in 3D space using ultrasonic sound waves. This technology has the potential to one day offer a less-invasive and destructive alternative to the lasers current employed in surgery suites. As Drinkwater tells University of Bristol News, "Optical tweezers are a fantastic technology, but always dangerously close to killing the cells being moved. With acoustics we're applying the same sort of forces but with way less energy associated. There's lots of applications that require cellular manipulation and acoustic systems are perfect for them."

HAT, not HOT

Marzo and Drinkwater call their invention "Holographic Acoustic Tweezers" (HOT), or simply "acoustic tweezers" in conversation. The HOT acronym differentiates the method from Holographic Optical Tweezers (HAT), the laser-based technology it hopes to supplant. The technique's medical applications do seem plausible: The scientists have already shown that they can connect polystyrene spheres with thread and use HAT to sew fabric.

Since moving polystyrene balls in the air is hardly the same as manipulating tiny objects in the body, the current breakthrough is seen as just a first step. Marzo and Drinkwater hope to demonstrate the system working in water in about a year, and from there move on to getting it going in biological tissue. Marzo says, "The flexibility of ultrasonic sound waves will allow us to operate at micrometre scales to position cells within 3D printed assemblies or living tissue. Or on a larger scale, to levitate tangible pixels that form a physical hologram in mid-air."

Sergio Larripa, Asier Marzo, Bruce Drinkwater

Working in the HAT array

How HAT works

Even in its current form, the HAT technology is impressive, to say the least.

"We applied a novel algorithm that controls an array of 256 small loudspeakers," says Marzo, "and that is what allows us to create the intricate, tweezer-like, acoustic fields." The speakers emit very high-frequency sound waves, in the 40 kHz range — human hearing is said to top out at just above 20 kHz, though there's some debate about its upper limits.

The HAT demonstration takes place inside a box-like array with the 256 single-centimeter speakers arranged on walls opposite each other over a reflective base. The "particles" they're moving are styrofoam balls from 1-3 millimeters in diameter, and HAT is currently capable of moving up to 25 of them at a time.

The future of HAT

Marzo describes his vision for HAT's future, saying, "The flexibility of ultrasonic sound waves will allow us to operate at micrometer scales to position cells within 3D printed assemblies or living tissue. Or on a larger scale, to levitate tangible pixels that form a physical hologram in mid-air." He describes another tantalizing use to Agencia Sync: "At micrometric scales," "Marzo says, it could allow "the manipulation of 3D cells to create structures beyond a simple culture in a two-dimensional Petri dish."

LinkedIn meets Tinder in this mindful networking app

Swipe right to make the connections that could change your career.

Getty Images
Sponsored
Swipe right. Match. Meet over coffee or set up a call.

No, we aren't talking about Tinder. Introducing Shapr, a free app that helps people with synergistic professional goals and skill sets easily meet and collaborate.

Keep reading Show less

4 reasons Martin Luther King, Jr. fought for universal basic income

In his final years, Martin Luther King, Jr. become increasingly focused on the problem of poverty in America.

(Photo by J. Wilds/Keystone/Getty Images)
Politics & Current Affairs
  • Despite being widely known for his leadership role in the American civil rights movement, Martin Luther King, Jr. also played a central role in organizing the Poor People's Campaign of 1968.
  • The campaign was one of the first to demand a guaranteed income for all poor families in America.
  • Today, the idea of a universal basic income is increasingly popular, and King's arguments in support of the policy still make a good case some 50 years later.
Keep reading Show less

Dead – yes, dead – tardigrade found beneath Antarctica

A completely unexpected discovery beneath the ice.

(Goldstein Lab/Wkikpedia/Tigerspaws/Big Think)
Surprising Science
  • Scientists find remains of a tardigrade and crustaceans in a deep, frozen Antarctic lake.
  • The creatures' origin is unknown, and further study is ongoing.
  • Biology speaks up about Antarctica's history.
Keep reading Show less

Why I wear my life on my skin

For Damien Echols, tattoos are part of his existential armor.

Videos
  • In prison Damien Echols was known by his number SK931, not his name, and had his hair sheared off. Stripped of his identity, the only thing he had left was his skin.
  • This is why he began tattooing things that are meaningful to him — to carry a "suit of armor" made up the images of the people and objects that have significance to him, from his friends to talismans.
  • Echols believes that all places are imbued with divinity: "If you interact with New York City as if there's an intelligence behind... then it will behave towards you the same way."
Keep reading Show less