David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Chris Hadfield
Retired Canadian Astronaut & Author
from the world's big
Start Learning

10 great minds we lost in 2018

Renowned scientists and technologists who've passed away in 2018.

Legendary physicist Stephen Hawking passed away on March 14, 2018.

Getty Images
  • We lost a great deal of internet pioneers and geniuses of physics in 2018.
  • Creations of fiber optic cables, men on the moon and the unsung heroes of the life sciences made their mark on the scientific enterprise.
  • The loss of men like Stephen Hawking leaves a hole in the sciences, but his work and many others will continue to inspire the generations to come.

Death is an inevitability every passing year. As time marches on to the eternal beyond, we look to some of the great minds we lost in 2018. Many celebrities, musicians and politicians have graced the grave's ledger. Their praises have been sung far and wide. Here we remember and reflect upon the great accomplishments of a few notable titans of science and technology.

Paul G. Allen 

Paul G. Allen was many things to many people. He had a long list of pursuits, talents and genius through his lifetime. From revolutionizing the world in the age of the PC as one of the founders of Microsoft, to running the scientific philanthropist outfit known as the Allen Institute. He had an unflinching curiosity to dig deep into the genome and the neurological centers of humankind itself.

Allen succumbed to cancer earlier this year on October 15th. Throughout his life he amassed a large fortune from Microsoft, which he put to use in the most noble of ways until the very end. His legacy will continue on in the research coming out of the Allen institute for Artificial Intelligence and the many other great things he left behind.

Kuen Charles Kao

Underpinning the entirety of our interconnected world are miles of fiber-optic cables. The man responsible for the first kernel of this idea was Kuen Charles Kao. In 1966 he proposed the use of optical fibers as the major infrastructure for communication. During his heyday, telecommunications used either coaxial electronic cables or broadcast radio signals. Kao among a few others wrote a largely unnoticed paper that would go on to influence and change the course of the world. For this eventual work he set out to do, he'd go on to win the Nobel Prize in Physics in 2009. He died in Hong Kong on September 23rd.

Osamu Shimomura

Born in 1928 in the town of Fukuchiyama, during the height of Japanese expansion, Osamu Shimomura lived through dark and perilous times. Against all odds he went through school and the hardships of his upbringing to eventually discover a crucial component for the biomedical sciences. He discovered the green fluorescent protein (GFP,) which would be the fundamental tool used by researchers to code and confirm the insertion of genes. He shared the Nobel Prize in Chemistry in 2008 with chemist Roger Tsien and neurobiologist Martin Chalfie.

Shimomura died in Nagasaki, Japan on October 19th, He was the first to show that a protein could be fluorescent and contain a light-emitting function in its own protein peptide chain. His pioneering research has allowed this discovery to be used as a tool for inserting genes into other organisms. Until the aequorin, which he discovered and named, was able to be genetically engineered – he freely shared his massive stock he'd collected to laboratories around the world.

Thomas A. Steitz 

Carrying on the work of what Francis Crick called the central dogma of biology - the genes - Thomas A. Steitz would go on to discover the secrets of the ribosome. In 2009 he received a Nobel Prize in Chemistry for his work that contributed to solving the structure of the ribosome, the component responsible for translating genetic information into proteins from the cell. Steitz was a crystallographer who came from a humble background and continued to push forth the important work up until the day he died on October 9th. A colleague of his, Peter Moore, once called him: "the most accomplished structural biologist of his generation."

Stephen W. Hawking

One of the most famous physicists of our time, Stephen W. Hawking roused the public's attention for his deep pursuit into the mysteries of the universe. Theoretical physicist Michio Kaku said of Hawking after his death:

"Not since Albert Einstein has a scientist so captured the public imagination and endeared himself to tens of millions of people around the world."

A unique figure who's adversity against total paralysis became a symbol of human determination and strength, Hawking didn't let his long-running physical ailments stop his triumph for truth. He'd go onto become our leading voice on the strange physics of black holes and quantum theory.

Alan Bean

Alan Bean was the fourth man to step foot and walk on the moon. In his later years he turned to painting as he told the grand story of one of our most important achievements of mankind. Alan Bean stepped onto the Lunar surface after the Apollo 12 flight some four months after Neil Armstrong and Buzz Aldrin had first landed on the moon. Although not the first flight or given as much fanfare as Apollo 11, this mission resulted in a more thorough exploration of the moon. Bean would go on to command a flight to the orbiting space station Skylab and set a record for being in space for 59 consecutive days.

Dorothy Cheney 

Dorothy L. Cheney changed the dynamics of we view the primate life and social structure. With her husband and research partner, Professor Robert M. Seyfarth, they did some of the most important field work with baboons. In a comment about her life in the New York Times it was said:

"Along with Robert Seyfarth, she did wonderfully clever, elegant field experiments that revealed how other primates think about the world — showing that they think in far more sophisticated and interesting ways than people anticipated."
Much of their research was put into the book: How Monkeys See the World: Inside the Mind of Another Species "The most human features of monkeys and apes lie not in their physical appearance but in their social relationships." Cheney helped change and usher in a new way of research to view and understand our primate cousins, by existing in their home territory and seeing their lives in natural action.

Frank Heart 

Frank Heart was the engineer who oversaw the first development of a routing computer for the famous Arpanet, the government's precursor to the internet. In 1969, he led a small team of engineers that would go on to build something called the Interface Message Processor (I.M.P.) The computer's main function was to switch data among other computers connected on the Arpanet. Much of what Heart was doing made it a necessity for him to invent while he went along, things that are fundamental to the internet like error resistance. Mr. Heart invented much of the technology that would go on to be the basis for the router systems we use today.

Leon Lederman

Leon Lederman was a physicist that delved into a wide range of new areas of fundamental physics. He would go on to discover things such as the muon neutrino, neutral kaon meson and learned about something called bottom quarks which make up the fundamental parts of neutrons and protons. Born in 1922 to Jewish Russian emigrants, he lived in a time when Jewish scientists were fleeing Europe en masse. He was part of a cadre of genius physicists who'd help revolutionize the field in the early 20th century.

He shared the 1988 Nobel Prize in physics for his work on the discovery that fundamental particles require symmetry as an intrinsic part of the natural order of things. His scientific legacy lives on as there are continued efforts to explore the many particles he discovered.

Aaron Klug

Aaron Klug was responsible for mapping the structure of viruses. He discovered the geometrical rules and eventual form of the poliovirus. Klug invented electron tomography, which resulted in the three dimensional image of a virus. This won him the Nobel Prize in Chemistry in 1982. Other components of his work would go on to allow him and the many scientists that came after him, the ability to initiate the transcription of RNA, which would become the basis for gene therapy. Klug was knighted in 1988. Throughout his life we went on to lead the Medical Researcher Council and Laboratory of Molecular Biology in the Royal Society.

Hulu's original movie "Palm Springs" is the comedy we needed this summer

Andy Samberg and Cristin Milioti get stuck in an infinite wedding time loop.

  • Two wedding guests discover they're trapped in an infinite time loop, waking up in Palm Springs over and over and over.
  • As the reality of their situation sets in, Nyles and Sarah decide to enjoy the repetitive awakenings.
  • The film is perfectly timed for a world sheltering at home during a pandemic.
Keep reading Show less

Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Surprising Science

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.

Keep reading Show less

Our ‘little brain’ turns out to be pretty big

The multifaceted cerebellum is large — it's just tightly folded.

Image source: Sereno, et al
Mind & Brain
  • A powerful MRI combined with modeling software results in a totally new view of the human cerebellum.
  • The so-called 'little brain' is nearly 80% the size of the cerebral cortex when it's unfolded.
  • This part of the brain is associated with a lot of things, and a new virtual map is suitably chaotic and complex.

Just under our brain's cortex and close to our brain stem sits the cerebellum, also known as the "little brain." It's an organ many animals have, and we're still learning what it does in humans. It's long been thought to be involved in sensory input and motor control, but recent studies suggests it also plays a role in a lot of other things, including emotion, thought, and pain. After all, about half of the brain's neurons reside there. But it's so small. Except it's not, according to a new study from San Diego State University (SDSU) published in PNAS (Proceedings of the National Academy of Sciences).

A neural crêpe

A new imaging study led by psychology professor and cognitive neuroscientist Martin Sereno of the SDSU MRI Imaging Center reveals that the cerebellum is actually an intricately folded organ that has a surface area equal in size to 78 percent of the cerebral cortex. Sereno, a pioneer in MRI brain imaging, collaborated with other experts from the U.K., Canada, and the Netherlands.

So what does it look like? Unfolded, the cerebellum is reminiscent of a crêpe, according to Sereno, about four inches wide and three feet long.

The team didn't physically unfold a cerebellum in their research. Instead, they worked with brain scans from a 9.4 Tesla MRI machine, and virtually unfolded and mapped the organ. Custom software was developed for the project, based on the open-source FreeSurfer app developed by Sereno and others. Their model allowed the scientists to unpack the virtual cerebellum down to each individual fold, or "folia."

Study's cross-sections of a folded cerebellum

Image source: Sereno, et al.

A complicated map

Sereno tells SDSU NewsCenter that "Until now we only had crude models of what it looked like. We now have a complete map or surface representation of the cerebellum, much like cities, counties, and states."

That map is a bit surprising, too, in that regions associated with different functions are scattered across the organ in peculiar ways, unlike the cortex where it's all pretty orderly. "You get a little chunk of the lip, next to a chunk of the shoulder or face, like jumbled puzzle pieces," says Sereno. This may have to do with the fact that when the cerebellum is folded, its elements line up differently than they do when the organ is unfolded.

It seems the folded structure of the cerebellum is a configuration that facilitates access to information coming from places all over the body. Sereno says, "Now that we have the first high resolution base map of the human cerebellum, there are many possibilities for researchers to start filling in what is certain to be a complex quilt of inputs, from many different parts of the cerebral cortex in more detail than ever before."

This makes sense if the cerebellum is involved in highly complex, advanced cognitive functions, such as handling language or performing abstract reasoning as scientists suspect. "When you think of the cognition required to write a scientific paper or explain a concept," says Sereno, "you have to pull in information from many different sources. And that's just how the cerebellum is set up."

Bigger and bigger

The study also suggests that the large size of their virtual human cerebellum is likely to be related to the sheer number of tasks with which the organ is involved in the complex human brain. The macaque cerebellum that the team analyzed, for example, amounts to just 30 percent the size of the animal's cortex.

"The fact that [the cerebellum] has such a large surface area speaks to the evolution of distinctively human behaviors and cognition," says Sereno. "It has expanded so much that the folding patterns are very complex."

As the study says, "Rather than coordinating sensory signals to execute expert physical movements, parts of the cerebellum may have been extended in humans to help coordinate fictive 'conceptual movements,' such as rapidly mentally rearranging a movement plan — or, in the fullness of time, perhaps even a mathematical equation."

Sereno concludes, "The 'little brain' is quite the jack of all trades. Mapping the cerebellum will be an interesting new frontier for the next decade."

Economists show how welfare programs can turn a "profit"

What happens if we consider welfare programs as investments?

A homeless man faces Wall Street

Spencer Platt/Getty Images
Politics & Current Affairs
  • A recently published study suggests that some welfare programs more than pay for themselves.
  • It is one of the first major reviews of welfare programs to measure so many by a single metric.
  • The findings will likely inform future welfare reform and encourage debate on how to grade success.
Keep reading Show less

Unhappy at work? How to find meaning and maintain your mental health

Finding a balance between job satisfaction, money, and lifestyle is not easy.

Scroll down to load more…