White dwarfs hold key to life in the universe, suggests study

A new study shows white dwarf stars create an essential component of life.

White dwarfs hold key to life in the universe, suggests study

White dwarfs.

NASA and H. Richer (University of British Columbia)
  • White dwarf stars create carbon atoms in the Milky Way galaxy, shows new study.
  • Carbon is an essential component of life.
  • White dwarfs make carbon in their hot insides before the stars die.

New analysis adds another wrinkle to the notion that we are all made of stars. Researchers found that white dwarfs, remains of stars, are a key source of carbon, an element essential to life.

90 percent of all stars end their celestial existence as white dwarfs that keep getting cooler and dimmer over billions of years. When they are at the point of final collapse, their ashes get picked up by stellar winds and are spread throughout the universe. These ashes are chock-full of chemical elements like carbon, created deep inside the star just prior to its death.

While every carbon atom in the universe was made by stars through the fusion of three helium nuclei, astrophysicists have argued over which ones were the primary source of carbon in our Milky Way galaxy – white dwarfs or massive stars that exploded, going supernova.

Now an international team of astronomers found that white dwarfs in open star clusters of the Milky Way carry the clues to the source of the galactic carbon. Open stars clusters can have up to a few thousand stars, as explains the press release from UC Santa Cruz, whose Enrico Ramirez-Ruiz, professor of astronomy and astrophysics, led the study.

Ramirez-Ruiz and his team based their work on astronomical observations conducted in 2018 at the W. M. Keck Observatory in Hawaii.

"From the analysis of the observed Keck spectra, it was possible to measure the masses of the white dwarfs, explained Ramirez-Ruiz. "Using the theory of stellar evolution, we were able to trace back to the progenitor stars and derive their masses at birth."

What Are White Dwarf Stars?

By analyzing the connection between the starting and final masses of the stars, the scientists found that the initial masses of the white dwarfs were much larger than they predicted. The explanation for this "kink"? The creation of carbon.

"Our study interprets this kink in the initial-final mass relationship as the signature of the synthesis of carbon made by low-mass stars in the Milky Way," shared lead author Paola Marigo from the University of Padua in Italy.

The research shows that before they died, the central cores of massive stars, twice the size of our Sun, grew even larger and fused carbon atoms in their melting insides. These were subsequently moved over to the surface and spread far and wide on stellar winds.

white dwarf artist rendering

This artist's concept shows an exoplanet and debris disk orbiting a polluted white dwarf.

NASA/JPL-Caltech

Interestingly, the scientists concluded that a star had to be large enough, weighing 1.5 solar masses to be able to diffuse its ashes full of carbon. A progenitor of this kind had to be responsible for the carbon on our own planet, crucial to life that came to inhabit it.

"Now we know that the carbon came from stars with a birth mass of not less than roughly 1.5 solar masses," said Marigo.

The researchers also propose that a large amount of the light emitted by very distant galaxies actually comes from bright carbon-rich stars near death.

Other scientists involved in the study came from Johns Hopkins University, American Museum of Natural History in New York, Columbia University, Space Telescope Science Institute, University of Warwick, University of Montreal, University of Uppsala, International School for Advanced Studies in Trieste, Italian National Institute for Astrophysics, and the University of Geneva.

Read their new study published in Nature Astronomy.

How tiny bioelectronic implants may someday replace pharmaceutical drugs

Scientists are using bioelectronic medicine to treat inflammatory diseases, an approach that capitalizes on the ancient "hardwiring" of the nervous system.

Left: The vagus nerve, the body's longest cranial nerve. Right: Vagus nerve stimulation implant by SetPoint Medical.

Credit: Adobe Stock / SetPoint Medical
Sponsored by Northwell Health
  • Bioelectronic medicine is an emerging field that focuses on manipulating the nervous system to treat diseases.
  • Clinical studies show that using electronic devices to stimulate the vagus nerve is effective at treating inflammatory diseases like rheumatoid arthritis.
  • Although it's not yet approved by the US Food and Drug Administration, vagus nerve stimulation may also prove effective at treating other diseases like cancer, diabetes and depression.
Keep reading Show less

"Forced empathy" is a powerful negotiation tool. Here's how to do it.

Master negotiator Chris Voss breaks down how to get what you want during negotiations.

Credit: Paul Craft / Shutterstock
Personal Growth
  • Former FBI negotiator Chris Voss explains how forced empathy is a powerful negotiating tactic.
  • The key is starting a sentence with "What" or "How," causing the other person to look at the situation through your eyes.
  • What appears to signal weakness is turned into a strength when using this tactic.
Keep reading Show less

Toward a disease-sniffing device that rivals a dog’s nose

Trained dogs can detect cancer and other diseases by smell. Could a device do the same?

JOEL SAGET/AFP via Getty Images
Technology & Innovation

Numerous studies have shown that trained dogs can detect many kinds of disease — including lung, breast, ovarian, bladder, and prostate cancers, and possibly Covid-19 — simply through smell. In some cases, involving prostate cancer for example, the dogs had a 99 percent success rate in detecting the disease by sniffing patients' urine samples.

Keep reading Show less

Scientists are building Earth’s virtual twin

Their goal is a digital model of the Earth that depicts climate change in all of its complexity.

Credit: Theis/Adobe Stock
Technology & Innovation
  • The European Union envisions an ambitious digital twin of the Earth to simulate climate change.
  • The project is a unique collaboration between Earth science and computer experts.
  • The digital twin will allow policymakers to audition expansive geoengineering projects meant to address climate change.
Keep reading Show less
Surprising Science

New research shows that bullies are often friends

Remedies must honor the complex social dynamics of adolescence.

Quantcast