How introducing microbial life to Mars can make it livable for humans

In order to build a second Earth, we need to look at how the first one was made.

  • Humanity dreams of becoming an interplanetary species, but no other planet in our solar system can currently support complex life.
  • In order to make a planet like Mars hospitable for us, we'll have to engage in a massive, decades-long terraforming effort.
  • Much of what makes Earth livable, such as breathable air, tolerable temperatures, and so on, are the result of microbial activity from Earth's early history. Can we use microbial life to make the same changes on Mars?

Three billion years ago, Earth would not have been all that pleasant for humans. It was covered in active volcanoes, spewing out carbon dioxide and water vapor. Single-celled life scraped by on a diet of sulfur. Most of the atmosphere consisted of carbon dioxide, methane, and other greenhouse gases, leaving the air toxic for us and most other modern life on Earth.

Then, about 2 and a half billion years ago, something happened. With what amounts to a snap of the fingers in geologic timescales, the atmosphere was pumped full of oxygen in what we call the Great Oxygenation Event. The abundance of oxygen meant that new, more diverse kinds of life could take a hold on the young planet, such as Eukaryotes. Fast-forward a few billion years, and complicated, multicellular life like ourselves are walking around the planet.

So where did all of this oxygen come from? Today, we think that nearly all of the oxygen on Earth came from cyanobacteria, tiny, blue-green, single-celled life that had the innovative idea of using sunlight to bake water and carbon dioxide into sugar for energy — that is, photosynthesis. Unfortunately for the cyanobacteria, photosynthesis makes the unappealing byproduct of oxygen, which they throw away into their environment.

Every breathe we take, we owe to cyanobacteria, and this influx of oxygen into our environment is ultimately responsible for why modern Earth is so accommodating to life. But what Earth giveth, Earth also taketh away. Whether it's because of climate change, nuclear war, a global pandemic, or some unknown catastrophe, eventually we'll want a new home. But our closest, best hope for a new home — Mars — doesn't have any oxygen.

It doesn't have much of an atmosphere at all, really.

This said, scientists are hoping to recreate the Great Oxygenation Event on Mars much in the same way it happened on Earth; by using microbial life to build the environment for us.

Terraforming Mars with microbes

Wikimedia Commons

An artist's depiction of a Martian terraforming effort's progression.

While Mars might be different from early Earth in many ways, it does possess some key characteristics that could make a microbial terraforming project work. Mars has an atmosphere that's 95 percent carbon dioxide, which provides half of the ingredients needed for cyanobacteria to make oxygen. The other ingredient, water, is admittedly scarce on the Red Planet, but we've seen evidence that it exists. We know that ice is abundant in the poles, so much so that if we were to melt them, Mars would be covered in an 18-foot-deep ocean.

There's already some liquid water that exists on Mars, to be sure — just in very scant amounts. We've seen features on Mars called recurring slope lineae, which are dark lines that advance down the sides of hills during the Martian summer and fade away during the winter. These dark lines are thought to be flows of water that come and go with the seasons.


This image of the side of a Martian crater shows recurring slope lineae. The dark lines descending from the slope of the crater come and go with the seasons, which may indicate flowing water.

So, to terraform Mars, we would start with areas where we know liquid water exists and dump a lot of cyanobacteria there. Admittedly, it would be a bit more of a sophisticated operation than that makes it sound, but that's the gist of the idea. We would also want to include microbes that produce greenhouse gases.

Mars has the opposite problem as Earth; we want to make Mars hotter and thicken its atmosphere, so its polar ice can melt. More water means more opportunities for microbial life to do its work. Not to mention that the current climate on Mars is much too chilly for even the hardiest human — it averages at about minus 81 degrees Fahrenheit, although the temperature can vary wildly.

The idea of using microbes to kickstart a terraforming project on Mars is so promising that NASA has already begun preliminary tests. The Mars Ecopoiesis Test Bed is a proposal for a device to be included with future robotic missions to Mars. It would look something like a drill with a hallow chamber inside. The drill would bury itself in the Martian soil, preferably somewhere with liquid water. A container full of cyanobacteria would be released into the chamber, and sensors would detect whether the microbial life produce any oxygen or other byproducts.

The first phase of this project was conducted in a simulated Martian environment here on Earth, and the results were positive. But even still, there are some major challenges we'll have to meet if we want to use microbially terraform Mars on a large-scale.



The Mars Ecopoiesis Test Bed.

Mars lacks something very necessary for life-giving planets: a magnetosphere. Mars used to have a magnetic field that protected the planet. We've found magnetized rocks on the surface indicating that this was the case, but at some point, the magnetic field just disappeared, and we don't know for certain what happened. Without a magnetosphere, the planet's surface is bombarded by solar radiation, which will make larger, more complex life difficult to sustain.

This "solar wind" also blows away the Martian atmosphere. So, even if we do coax microbial life into producing oxygen and other gasses, much of it will simply float away into space.

Wikimedia Commons

These images show different elements escaping from the Martian atmosphere. From left to right, the images show carbon, oxygen, and hydrogen floating away to space.

Fortunately, these challenges are not insurmountable. In the short term, we'll likely construct dome-like habitats to protect both us, our cyanobacteria, and our new atmosphere from the solar wind. In the long term, NASA scientists have proposed placing a powerful magnet in fixed orbit between Mars and the Sun. This magnet will redirect the solar wind, shielding the Martian atmosphere. As microbial life continues to output oxygen and greenhouse gases into the Martian atmosphere, the planet will warm up, the ice caps will melt into oceans, and Mars may very well become our second home.

3D printing might save your life one day. It's transforming medicine and health care.

What can 3D printing do for medicine? The "sky is the limit," says Northwell Health researcher Dr. Todd Goldstein.

Northwell Health
Sponsored by Northwell Health
  • Medical professionals are currently using 3D printers to create prosthetics and patient-specific organ models that doctors can use to prepare for surgery.
  • Eventually, scientists hope to print patient-specific organs that can be transplanted safely into the human body.
  • Northwell Health, New York State's largest health care provider, is pioneering 3D printing in medicine in three key ways.
Keep reading Show less

Where do atoms come from? Billions of years of cosmic fireworks.

The periodic table was a lot simpler at the beginning of the universe.

10 excerpts from Marcus Aurelius' 'Meditations' to unlock your inner Stoic

Great ideas in philosophy often come in dense packages. Then there is where the work of Marcus Aurelius.

(Getty Images)
Personal Growth
  • Meditations is a collection of the philosophical ideas of the Roman Emperor Marcus Aurelius.
  • Written as a series of notes to himself, the book is much more readable than the dry philosophy most people are used to.
  • The advice he gave to himself 2,000 years ago is increasingly applicable in our hectic, stressed-out lives.
Keep reading Show less

An organism found in dirt may lead to an anxiety vaccine, say scientists

Can dirt help us fight off stress? Groundbreaking new research shows how.

University of Colorado Boulder
Surprising Science
  • New research identifies a bacterium that helps block anxiety.
  • Scientists say this can lead to drugs for first responders and soldiers, preventing PTSD and other mental issues.
  • The finding builds on the hygiene hypothesis, first proposed in 1989.

Are modern societies trying too hard to be clean, at the detriment to public health? Scientists discovered that a microorganism living in dirt can actually be good for us, potentially helping the body to fight off stress. Harnessing its powers can lead to a "stress vaccine".

Researchers at the University of Colorado Boulder found that the fatty 10(Z)-hexadecenoic acid from the soil-residing bacterium Mycobacterium vaccae aids immune cells in blocking pathways that increase inflammation and the ability to combat stress.

The study's senior author and Integrative Physiology Professor Christopher Lowry described this fat as "one of the main ingredients" in the "special sauce" that causes the beneficial effects of the bacterium.

The finding goes hand in hand with the "hygiene hypothesis," initially proposed in 1989 by the British scientist David Strachan. He maintained that our generally sterile modern world prevents children from being exposed to certain microorganisms, resulting in compromised immune systems and greater incidences of asthma and allergies.

Contemporary research fine-tuned the hypothesis, finding that not interacting with so-called "old friends" or helpful microbes in the soil and the environment, rather than the ones that cause illnesses, is what's detrimental. In particular, our mental health could be at stake.

"The idea is that as humans have moved away from farms and an agricultural or hunter-gatherer existence into cities, we have lost contact with organisms that served to regulate our immune system and suppress inappropriate inflammation," explained Lowry. "That has put us at higher risk for inflammatory disease and stress-related psychiatric disorders."

University of Colorado Boulder

Christopher Lowry

This is not the first study on the subject from Lowry, who published previous work showing the connection between being exposed to healthy bacteria and mental health. He found that being raised with animals and dust in a rural environment helps children develop more stress-proof immune systems. Such kids were also likely to be less at risk for mental illnesses than people living in the city without pets.

Lowry's other work also pointed out that the soil-based bacterium Mycobacterium vaccae acts like an antidepressant when injected into rodents. It alters their behavior and has lasting anti-inflammatory effects on the brain, according to the press release from the University of Colorado Boulder. Prolonged inflammation can lead to such stress-related disorders as PTSD.

The new study from Lowry and his team identified why that worked by pinpointing the specific fatty acid responsible. They showed that when the 10(Z)-hexadecenoic acid gets into cells, it works like a lock, attaching itself to the peroxisome proliferator-activated receptor (PPAR). This allows it to block a number of key pathways responsible for inflammation. Pre-treating the cells with the acid (or lipid) made them withstand inflammation better.

Lowry thinks this understanding can lead to creating a "stress vaccine" that can be given to people in high-stress jobs, like first responders or soldiers. The vaccine can prevent the psychological effects of stress.

What's more, this friendly bacterium is not the only potentially helpful organism we can find in soil.

"This is just one strain of one species of one type of bacterium that is found in the soil but there are millions of other strains in soils," said Lowry. "We are just beginning to see the tip of the iceberg in terms of identifying the mechanisms through which they have evolved to keep us healthy. It should inspire awe in all of us."

Check out the study published in the journal Psychopharmacology.