Big ideas.
Once a week.
Subscribe to our weekly newsletter.
Unusual creatures uncovered beneath an Antarctic ice shelf
The organisms were anchored to a boulder 900 meters beneath the ice, living a cold, dark existence miles away from the open ocean.

A jellyfish pictured in an Antarctic ice shelf borehole.
Life finds a way. That way may be uncomfortable, brimming with struggle, and demand an unsightly appendage or two, but as Jeff Goldblum reminds us, "Life will not be contained, life breaks free, it expands to new territories, and it crashes through barriers painfully, maybe even dangerously, but, uh, there it is."
To crash through those barriers, however, creatures must find the requirements for life waiting on the other side: namely, liquid water, a source of energy, and biogenic elements such as carbon and nitrogen. While terrestrial life has found some environments too hostile to call home, it's also evolved mind-boggling adaptations that allow it to access those three essentials in some bizarre places.
For example, the denizens of hydrothermal vents—such as the yeti crabs, scaly-foot gastropods, and Pompeii worms—dwell too deep in the ocean for sunlight to reach. Because their food chains can't rely on photosynthesis, they're supported by microbes that utilize a process called chemosynthesis, which converts chemicals from the vents into sugars and, in turn, useable energy.
Similarly, the Atacama Desert is a place so dry and barren that scientists compared it to the rusty dunes of Mars. Yet, even here, life has found a way in the form of microbes who wait patiently for those fleeting spits of rainfall to replicate.
And a new study, published in Frontiers in Marine Science, has proven Goldblum correct, uh, yes, once again. The study details the discovery of unusual creatures in one of the most unsympathetic environments on Earth's most inhospitable continent.
A cold dark place to call home
The Antarctic sessile creatures photographed on their home boulder.
Credit: Frontiers in Marine Science
Researchers made the discovery while drilling boreholes on the Filchner-Ronne Ice Shelf. Antarctica's ice shelves are giant, permanent floating ice sheets connected to the continent's coastlines, with the Filchner-Ronne shelf being one of the largest. Using a hot-water drill system, they bore through roughly 900 meters of the ice looking for sediment samples. Instead, they discovered a boulder. Two hundred sixty kilometers away from the ice front, the rock was nestled in a world of complete darkness at -2.2°C. And on it, they found sessile organisms.
"This discovery is one of those fortunate accidents that pushes ideas in a different direction and shows us that Antarctic marine life is incredibly special and amazingly adapted to a frozen world," Dr Huw Griffiths, the study's lead author and a biogeographer of the British Antarctic Survey, said in a press release.
Sessile creatures are defined by their inability to move freely. They live their lives anchored to a substrate—in this case, the aforementioned boulder. Common sessile animals found in coastal tide pools include mussels, barnacles, and sea anemones, yet none of these were present beneath the Antarctic shelf. Instead, the researchers discovered a stalked sponge, roughly a dozen non-stalked sponges, and 22 unidentifiable stalked organisms.
Previous boreholes had revealed creatures living in these murky waters, but they had always been free-moving predators and scavengers such as jellyfish and krill. It's not too surprising to find such animals under the ice shelves as their mobility allows them to seek out food that may drift beneath.
But sessile organisms depend on their food to be delivered to them. That's why they are so bountiful in tide pools; tides and currents are the DoorDash of the ocean world. It's also why the researchers found the sponge's Antarctic lodgings so astounding. Because they live 1,500 kilometers upstream from the nearest source of photosynthesis, it's unknown how a food supply reaches these sponges or whether they generate nutrients from some other means, such as glacial melt or carnivorous noshing.
"Our discovery raises so many more questions than it answers, such as how did they get there? What are they eating? How long have they been there? How common are these boulders covered in life? Are these the same species as we see outside the ice shelf or are they new species? And what would happen to these communities if the ice shelf collapsed?" Griffiths added.
To answer those questions, researchers will need to revisit the sponges to collect samples and study them in more depth. We'll also need to explore further the vast reaches of the Antarctic continental shelf. According to the release, counting the previous boreholes, scientists have only studied an area roughly the size of a tennis court to date.
Life will not be contained
As science discovers life in more and more unusual places, it's also considering more and more that life has not been contained to our pale blue dot. For example, the recent discovery of microbial life in the Atacama Desert has reignited hope that evidence of past life will be found on Mars. NASA's Perseverance Rover recently land on Mars to begin analyzing soil samples from the Jezero Crater to test that hypothesis.
Looking to the future, NASA's Dragonfly rotorcraft aims to explore the Saturn moon of Titan. The icy moon has a makeup similar to early Earth's, so the vehicle will study the moon's atmosphere and surface for signs of chemical evidence for life. And the ice-covered surface of Europa could hold twice as much water as Earth and a bevy of hydrothermal activity that could harbor life within our solar system.
Here life is, uh, and there it may be.
- green snow antarctica - Big Think ›
- Antarctica is now the best-mapped continent in the world - Big Think ›
- What the world will look like 4°C warmer - Big Think ›
How tiny bioelectronic implants may someday replace pharmaceutical drugs
Scientists are using bioelectronic medicine to treat inflammatory diseases, an approach that capitalizes on the ancient "hardwiring" of the nervous system.
Left: The vagus nerve, the body's longest cranial nerve. Right: Vagus nerve stimulation implant by SetPoint Medical.
- Bioelectronic medicine is an emerging field that focuses on manipulating the nervous system to treat diseases.
- Clinical studies show that using electronic devices to stimulate the vagus nerve is effective at treating inflammatory diseases like rheumatoid arthritis.
- Although it's not yet approved by the US Food and Drug Administration, vagus nerve stimulation may also prove effective at treating other diseases like cancer, diabetes and depression.
The nervous system’s ancient reflexes
<p>You accidentally place your hand on a hot stove. Almost instantaneously, your hand withdraws.</p><p>What triggered your hand to move? The answer is <em>not</em> that you consciously decided the stove was hot and you should move your hand. Rather, it was a reflex: Skin receptors on your hand sent nerve impulses to the spinal cord, which ultimately sent back motor neurons that caused your hand to move away. This all occurred before your "conscious brain" realized what happened.</p><p>Similarly, the nervous system has reflexes that protect individual cells in the body.</p><p>"The nervous system evolved because we need to respond to stimuli in the environment," said Dr. Tracey. "Neural signals don't come from the brain down first. Instead, when something happens in the environment, our peripheral nervous system senses it and sends a signal to the central nervous system, which comprises the brain and spinal cord. And then the nervous system responds to correct the problem."</p><p>So, what if scientists could "hack" into the nervous system, manipulating the electrical activity in the nervous system to control molecular processes and produce desirable outcomes? That's the chief goal of bioelectronic medicine.</p><p>"There are billions of neurons in the body that interact with almost every cell in the body, and at each of those nerve endings, molecular signals control molecular mechanisms that can be defined and mapped, and potentially put under control," Dr. Tracey said in a <a href="https://www.youtube.com/watch?v=AJH9KsMKi5M" target="_blank">TED Talk</a>.</p><p>"Many of these mechanisms are also involved in important diseases, like cancer, Alzheimer's, diabetes, hypertension and shock. It's very plausible that finding neural signals to control those mechanisms will hold promises for devices replacing some of today's medication for those diseases."</p><p>How can scientists hack the nervous system? For years, researchers in the field of bioelectronic medicine have zeroed in on the longest cranial nerve in the body: the vagus nerve.</p>The vagus nerve
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTYyOTM5OC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0NTIwNzk0NX0.UCy-3UNpomb3DQZMhyOw_SQG4ThwACXW_rMnc9mLAe8/img.jpg?width=1245&coordinates=0%2C0%2C0%2C0&height=700" id="09add" class="rm-shortcode" data-rm-shortcode-id="f38dbfbbfe470ad85a3b023dd5083557" data-rm-shortcode-name="rebelmouse-image" data-width="1245" data-height="700" />Electrical signals, seen here in a synapse, travel along the vagus nerve to trigger an inflammatory response.
Credit: Adobe Stock via solvod
<p>The vagus nerve ("vagus" meaning "wandering" in Latin) comprises two nerve branches that stretch from the brainstem down to the chest and abdomen, where nerve fibers connect to organs. Electrical signals constantly travel up and down the vagus nerve, facilitating communication between the brain and other parts of the body.</p><p>One aspect of this back-and-forth communication is inflammation. When the immune system detects injury or attack, it automatically triggers an inflammatory response, which helps heal injuries and fend off invaders. But when not deployed properly, inflammation can become excessive, exacerbating the original problem and potentially contributing to diseases.</p><p>In 2002, Dr. Tracey and his colleagues discovered that the nervous system plays a key role in monitoring and modifying inflammation. This occurs through a process called the <a href="https://www.nature.com/articles/nature01321" target="_blank" rel="noopener noreferrer">inflammatory reflex</a>. In simple terms, it works like this: When the nervous system detects inflammatory stimuli, it reflexively (and subconsciously) deploys electrical signals through the vagus nerve that trigger anti-inflammatory molecular processes.</p><p>In rodent experiments, Dr. Tracey and his colleagues observed that electrical signals traveling through the vagus nerve control TNF, a protein that, in excess, causes inflammation. These electrical signals travel through the vagus nerve to the spleen. There, electrical signals are converted to chemical signals, triggering a molecular process that ultimately makes TNF, which exacerbates conditions like rheumatoid arthritis.</p><p>The incredible chain reaction of the inflammatory reflex was observed by Dr. Tracey and his colleagues in greater detail through rodent experiments. When inflammatory stimuli are detected, the nervous system sends electrical signals that travel through the vagus nerve to the spleen. There, the electrical signals are converted to chemical signals, which trigger the spleen to create a white blood cell called a T cell, which then creates a neurotransmitter called acetylcholine. The acetylcholine interacts with macrophages, which are a specific type of white blood cell that creates TNF, a protein that, in excess, causes inflammation. At that point, the acetylcholine triggers the macrophages to stop overproducing TNF – or inflammation.</p><p>Experiments showed that when a specific part of the body is inflamed, specific fibers within the vagus nerve start firing. Dr. Tracey and his colleagues were able to map these relationships. More importantly, they were able to stimulate specific parts of the vagus nerve to "shut off" inflammation.</p><p>What's more, clinical trials show that vagus nerve stimulation not only "shuts off" inflammation, but also triggers the production of cells that promote healing.</p><p>"In animal experiments, we understand how this works," Dr. Tracey said. "And now we have clinical trials showing that the human response is what's predicted by the lab experiments. Many scientific thresholds have been crossed in the clinic and the lab. We're literally at the point of regulatory steps and stages, and then marketing and distribution before this idea takes off."<br></p>The future of bioelectronic medicine
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTYxMDYxMy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzNjQwOTExNH0.uBY1TnEs_kv9Dal7zmA_i9L7T0wnIuf9gGtdRXcNNxo/img.jpg?width=980" id="8b5b2" class="rm-shortcode" data-rm-shortcode-id="c005e615e5f23c2817483862354d2cc4" data-rm-shortcode-name="rebelmouse-image" data-width="2000" data-height="1125" />Vagus nerve stimulation can already treat Crohn's disease and other inflammatory diseases. In the future, it may also be used to treat cancer, diabetes, and depression.
Credit: Adobe Stock via Maridav
<p>Vagus nerve stimulation is currently awaiting approval by the US Food and Drug Administration, but so far, it's proven safe and effective in clinical trials on humans. Dr. Tracey said vagus nerve stimulation could become a common treatment for a wide range of diseases, including cancer, Alzheimer's, diabetes, hypertension, shock, depression and diabetes.</p><p>"To the extent that inflammation is the problem in the disease, then stopping inflammation or suppressing the inflammation with vagus nerve stimulation or bioelectronic approaches will be beneficial and therapeutic," he said.</p><p>Receiving vagus nerve stimulation would require having an electronic device, about the size of lima bean, surgically implanted in your neck during a 30-minute procedure. A couple of weeks later, you'd visit, say, your rheumatologist, who would activate the device and determine the right dosage. The stimulation would take a few minutes each day, and it'd likely be unnoticeable.</p><p>But the most revolutionary aspect of bioelectronic medicine, according to Dr. Tracey, is that approaches like vagus nerve stimulation wouldn't come with harmful and potentially deadly side effects, as many pharmaceutical drugs currently do.</p><p>"A device on a nerve is not going to have systemic side effects on the body like taking a steroid does," Dr. Tracey said. "It's a powerful concept that, frankly, scientists are quite accepting of—it's actually quite amazing. But the idea of adopting this into practice is going to take another 10 or 20 years, because it's hard for physicians, who've spent their lives writing prescriptions for pills or injections, that a computer chip can replace the drug."</p><p>But patients could also play a role in advancing bioelectronic medicine.</p><p>"There's a huge demand in this patient cohort for something better than they're taking now," Dr. Tracey said. "Patients don't want to take a drug with a black-box warning, costs $100,000 a year and works half the time."</p><p>Michael Dowling, president and CEO of Northwell Health, elaborated:</p><p>"Why would patients pursue a drug regimen when they could opt for a few electronic pulses? Is it possible that treatments like this, pulses through electronic devices, could replace some drugs in the coming years as preferred treatments? Tracey believes it is, and that is perhaps why the pharmaceutical industry closely follows his work."</p><p>Over the long term, bioelectronic approaches are unlikely to completely replace pharmaceutical drugs, but they could replace many, or at least be used as supplemental treatments.</p><p>Dr. Tracey is optimistic about the future of the field.</p><p>"It's going to spawn a huge new industry that will rival the pharmaceutical industry in the next 50 years," he said. "This is no longer just a startup industry. [...] It's going to be very interesting to see the explosive growth that's going to occur."</p>Meanwhile, Antarctica's snow is turning green
Penguin poop and climate change are fuelling the spread of 'snow algae' down the Antarctic Peninsula
Some of the areas on the Antarctic Peninsula where the snow is turning green.
- On the Antarctic Peninsula, so-called snow algae are turning the snow green.
- The algae thrive on temperatures just above freezing, which are increasingly common.
- Antarctica's green snow could lay the groundwork for a whole new ecosystem.
First ever map
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMzMwNzU1Ni9vcmlnaW4ucG5nIiwiZXhwaXJlc19hdCI6MTY0NjI3MTE2NH0.y2ZCfgKJ5itqijNGJjC6hGl5sZpIYm07oPeX0Bz_E0E/img.png?width=980" id="202a2" class="rm-shortcode" data-rm-shortcode-id="9ee40649be1a47633c8d401f3056a5f2" data-rm-shortcode-name="rebelmouse-image" alt="A photograph showing a snow algae bloom dominated by green algae starting to melt out from beneath seasonal snow cover to sit exposed upon underlying multiyear ne\u0301 ve\u0301 /firn. 26 January 2018, Anchorage Island (67.6\u00b0S). Bloom shown was approximately 50\u2009m\u2009\u00d7\u2009100\u2009m." data-width="598" data-height="729" />Snow algae bloom, Anchorage Island, 26 January 2018.
Image: Nature Communications, CC BY 4.0
<p>With COVID-19's stranglehold on the news cycle, it's enough to wax nostalgic about the other varieties of existential dread that used to stalk our screens. But don't worry – there's still plenty to worry about. Global warming, for example, is still very much a going concern. In Antarctica, it's been turning the snow green. And no, that's not a good thing.</p><p>It's all happening on and near the Antarctic Peninsula, the bit of the Frozen Continent that juts out furthest north. It's one of the fastest-warming places on Earth. By some accounts, average annual temperatures have increased by almost 3°C (5.4°F) since the start of the Industrial Revolution (c. 1800).</p><p>The Peninsula is where, earlier this year, Antarctica's temperature topped 20°C for the first time on record. On 9 February 2020, Brazilian scientists logged 20.75°C (69.35°F) at Seymour Island, near the Peninsula's northern tip. Just three days earlier, the Argentinian research station at Esperanza, on the Peninsula itself, had measured 18.30°C (64.94°F), a new record for Antarctica's mainland. </p><p>Those warmer temperatures are not without consequences. Certainly the most spectacular one are the giant icebergs the size of small countries that occasionally calve off from the local ice shelves (see #<a href="https://bigthink.com/strange-maps/wait-a-minute-how-big-is-that-iceberg" target="_blank">849</a>). Less dramatically, they've also led to an increase in microscopic algae that are coloring large swathes of snow green, both on the Peninsula itself and on neighboring islands. </p><p>These 'snow algae' are sometimes also known as 'watermelon snow', because they can produce shades of pink, red or green. The cause is a species of green algae that sometimes contains a secondary red pigment. Unlike other freshwater algae, it is cryophilic, which means that it thrives in near-freezing conditions. </p><p>This week sees the publication in the journal <em><a href="https://www.nature.com/ncomms/" target="_blank">Nature Communications</a> </em>of the first ever large-scale map of the Peninsula's snow algae. Single-cell organisms they may be, but they proliferate to such an extent that the patches of snow and ice they turn a vivid green can be observed from space. <span></span></p>1,679 separate 'blooms'
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMzMwNzU1Ny9vcmlnaW4ucG5nIiwiZXhwaXJlc19hdCI6MTY2ODc3ODcwN30.921f6vUX4t-A-KMbQGAGNgcynmgmJVh0rmveIJgfZWo/img.png?width=980" id="4df92" class="rm-shortcode" data-rm-shortcode-id="9dd492efd36849aa56d8a0334bbd9670" data-rm-shortcode-name="rebelmouse-image" alt="a Overview of the locations of individual blooms of green-dominant snow algae identified across the Antarctic Peninsula using modelled data from satellite imagery and ground data (circles; n\u2009=\u20091679). Circle colour scale represents the mean cell density (cells\u2009ml\u22121) of each bloom. Red triangles indicate the location of ground validation sites (n\u2009=\u200927). Cyan triangles show the location of our Adelaide Island and King George Island field sites. b RGB Sentinel 2A image of green snow algae blooms at one of our validation sites, Anchorage Island (February, 2020). c Output of IB4 (Eq. (1)), where coloured pixels are those not masked by Eq. (3). Pixel values are converted to cell density (cells\u2009ml\u22121) using Eq. (2) with the colour scale showing the resultant cell density for each pixel identified as containing green snow algae." data-width="899" data-height="711" />On the left: overview of the locations of individual blooms (red triangles indicate ground validation sites, cyan ones indicate field validation sites). Top right: satellite image from a validation site on Anchorage Island. Bottom right: exact location of green snow algae sites.
Image: Nature Communications, CC BY 4.0
<p>The team who produced this map actually did use data from the European Space Agency's Sentinel 2 constellation of satellites, adding field data collected on Adelaide Island (2017/18) and Fildes and King George Islands (2018/19).</p><p>Prepared over a six-year period by biologists from Cambridge University in collaboration with the British Antarctic Survey, the map identifies 1,679 separate 'blooms' of the snow algae.</p><p>The largest bloom they found, on Robert Island in the South Shetland Islands, was 145,000 m2 (almost 36 acres). The total area covered by the green snow was 1.9 km2 (about 0.75 sq. mi). For comparison: Other vegetation on the entire peninsular area covers about 8.5 km2 (3.3 sq. mi).</p><p>For the algae to thrive, the conditions need to be just right: water needs to be just above freezing point to give the snow the right degree of slushiness. And that's happening with increasing frequency on the Peninsula during the Antarctic summer, from November to February. </p><p>Like other plants, the green algae use photosynthesis to grow. This means they act as a carbon sink. The researchers estimate that the algae they observed remove about 479 tons of atmospheric CO2 per year. That equates to about 875,000 average UK car journeys, or 486 flights between London and New York. </p><p>That's not counting the carbon stored by the red snow algae, which were not included in the study. The red algae are estimated to cover an area at least half of the green snow algae, and to be less dense. </p><p>About two-thirds of the algal blooms studied occurred on the area's islands, which have been even more affected by regional temperature rises than the Peninsula itself.</p><p>The blooms also correlate to the local wildlife - in particular to their poop, which serves as fertiliser for the algae. Researchers found half of all blooms occurred within 100 m (120 yards) of the sea, almost two-thirds were within 5 km (3.1 miles) of a penguin colony. Others were near other birds' nesting sites, and where seals come ashore. <br></p>Essential excrement
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMzMwNzU2MC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYxNjE0MDUyM30.5e1opKYExiwuo4dAWyYBhdVxZQ0Pk8W1VCL1acNZcvo/img.jpg?width=980" id="732f6" class="rm-shortcode" data-rm-shortcode-id="78acfd89f5451180ccc6edd3ef29bf81" data-rm-shortcode-name="rebelmouse-image" alt="\u200bA colony of Ad\u00e9lie penguins on Paulet Island, just off the Antarctic Peninsula." data-width="1280" data-height="960" />A colony of Adélie penguins on Paulet Island, just off the Antarctic Peninsula.
Image: Jens Bludau, CC BY-SA 3.0
<p>This suggests that the excrement of the local marine fauna provides essential hotspots of fertiliser like nitrogen and phosphate, in what is otherwise a fairly barren environment. The researchers suggest the algae in their turn could become nutrients for other species, and thus be the building block for a whole new ecosystem on the Peninsula. There is some evidence the algae are already cohabiting with fungal spores and bacteria. </p><p><span></span>'Green snow' currently occurs from around 62.2° south (at Bellingshausen Station, on the South Shetland Islands) to 68.1° south (at San Martin Station, on Faure Island). As regional warming continues, the snow algae phenomenon is predicted to increase. Some of the islands where it now occurs may lose summer snow cover, thus becoming unsuitable for snow algae; but the algae are likely to spread to areas further south where they are as yet rare or absent. </p><p><span></span>The spread of snow algae itself will act as an accelerant for regional warming: while white snow reflects around 80% of the sun's rays, green snow reflects only around 45%. This reduction of the albedo effect increases heat absorption, adding to the chance of the snow melting.</p><p><span></span>If no effort is made to reduce greenhouse gas emissions, scientists predict global melting of snow and ice reserves could push up sea levels by up to 1.1 m (3.6 ft) by the end of the century. If global warming continues unabated and Antarctica's vast stores of snow and ice – about 70% of the world's fresh water – were all to melt, sea levels could rise by up to 60 m (almost 200 ft).</p><p>That may be many centuries away. Meanwhile, the snow algae map will help monitor the speed at which Antarctica is turning green by serving as a baseline for the impact of climate change on the Earth's southernmost continent. <br></p><p><br></p><p><em>For the entire article: </em><em><a href="https://www.nature.com/articles/s41467-020-16018-w" target="_blank">'Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink'</a> in </em><a href="https://www.nature.com/ncomms/" target="_blank">Nature Communications</a>.</p><p><strong>Strange Maps #1030</strong></p><p><em>Got a strange map? Let me know at <a href="mailto:strangemaps@gmail.com">strangemaps@gmail.com</a>.</em><br></p>Best. Science. Fiction. Show. Ever.
"The Expanse" is the best vision I've ever seen of a space-faring future that may be just a few generations away.
- Want three reasons why that headline is justified? Characters and acting, universe building, and science.
- For those who don't know, "The Expanse" is a series that's run on SyFy and Amazon Prime set about 200 years in the future in a mostly settled solar system with three waring factions: Earth, Mars, and Belters.
- No other show I know of manages to use real science so adeptly in the service of its story and its grand universe building.
Credit: "The Expanse" / Syfy
<p>Now, I get it if you don't agree with me. I love "Star Trek" and I thought "Battlestar Galactica" (the new one) was amazing and I do adore "The Mandalorian". They are all fun and important and worth watching and thinking about. And maybe you love them more than anything else. But when you sum up the acting, the universe building, and the use of real science where it matters, I think nothing can beat "The Expanse". And with a <a href="https://www.rottentomatoes.com/tv/the_expanse" target="_blank">Rotten Tomato</a> average rating of 93%, I'm clearly not the only one who feels this way.</p><p>Best.</p><p>Show.</p><p>Ever. </p>How exercise changes your brain biology and protects your mental health
Contrary to what some might think, the brain is a very plastic organ.
As with many other physicians, recommending physical activity to patients was just a doctor chore for me – until a few years ago. That was because I myself was not very active.
Here's a 10-step plan to save our oceans
By 2050, there may be more plastic than fish in the sea.
