Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Found in New Mexico: A tiny cousin of the T-Rex

A high-schooler's dig experience writes a new chapter in T-Rex history.

Image source: Artist's conception by Andrey Atuchin/Virginia Tech
  • The bones he found in New Mexico remained unidentified for 20 years.
  • Suskityrannus hazelae turns out to be a diminutive predecessor to the "king lizard."
  • The tiny terror is the ultimate "citizen scientist" victory.

A fascination with dinosaurs typically starts young. If an adult needs a question answered, a little kid is often the best, most enthusiastic, and up-to-date resource. Going on a paleontology dig is certainly one of the cooler, fascinating ways for a teen to spend a summer.

It's even better when he or she gets the thrill of gently prying from the dirt something that's been never seen before, which is what happened in 1998 when a 16-year-old high-school junior named Sterling Nesbitt found the remains of an unknown creature at Zuni Basin dinosaur site, which straddles the New Mexico-Arizona border. A year earlier geologist Robert Denton had found a partial, tiny skull of the same mysterious theropod, but Nesbitt's find was a more complete specimen.

This month, that creature has finally been scientifically identified: It's a tiny tyrannosaurid — dubbed Suskityrannus hazelae — and its remains offer an unprecedented view of what the mighty T-Rex was like before it became the killing behemoth kids know and love. Indeed, according to the researchers, the dino is phylogenetically the "intermediate between the oldest, smallest tyrannosauroids and the gigantic, last-surviving tyrannosaurids."

Suskityrannus hazelae

A partial Suskityrannus skull is dwarfed by just the jawbone of a T-Rex. Image source: Virginia Tech News

When Nesbitt originally found the bones, they were among the remains of other prehistoric fish, turtles, lizards, crocodylians, and mammals. Because of this, for a time, the assumption was that he'd found a dromaeosaur (think Velociraptor). "Essentially, we didn't know we had a cousin of Tyrannosaurus rex for many years," Nesbitt says, regarding the new taxonomy.

While a typical Tyrannosaus rex crushed the scales at about nine tons, the Suskityrannus weighed in at a mere 45 and 90 lbs. It stood just three fee tall at the hip, and was about nine feet long. The specimen found by Nesbitt is believed to date back to the Cretaceous, about 92 million years ago, and is thought to have been at least three years old. Like its larger cousin, it was also a meat-eater, though it likely supped on much smaller prey than did T-Rex.

Nesbitt tells Virginia Tech News, "Suskityrannus gives us a glimpse into the evolution of tyrannosaurs just before they take over the planet." He adds, "It also belongs to a dinosaurian fauna that just precedes the iconic dinosaurian faunas in the latest Cretaceous that include some of the most famous dinosaurs, such as the Triceratops, predators like Tyrannosaurus rex, and duckbill dinosaurs like Edmotosaurus."

"Suskityrannus has a much more slender skull and foot than its later and larger cousins, the Tyrannosaurus rex," Nesbitt reports. A partial claw has been found, and though it's unclear how many fingers Suskityrannus had, yes, they're just as oddly small as those of T-Rex.

The animal's new name comes from the Zuni word for coyote, "Suski" — the Zuni Tribal Council granted permission to appropriate the term. The "hazelae" is a tribute to Hazel Wolfe, who discovered the Zuni Basin site in 1996, and whose support has been crucial to the ongoing Zuni Basin Paleontology Project.

Life-changer

Nesbitt at the 1998 dig. Until 2006, his discovery was housed at the Arizona Museum of Natural History. Image source: Hazel Wolfe / Virginia Tech News

What became of discoverers? Denton is now an engineering geologist at GeoConcepts Engineering, and Nesbitt is now a geoscientist at Virginia Tech.

"My discovery of a partial skeleton of Suskityrannus put me onto a scientific journey that has framed my career. I am now an assistant professor that gets to teach about Earth history," says Nesbitt.

Nesbitt eventually took possession of his find and carted it around with him as he moved between academic jobs until it was finally identified.

Hulu's original movie "Palm Springs" is the comedy we needed this summer

Andy Samberg and Cristin Milioti get stuck in an infinite wedding time loop.

Gear
  • Two wedding guests discover they're trapped in an infinite time loop, waking up in Palm Springs over and over and over.
  • As the reality of their situation sets in, Nyles and Sarah decide to enjoy the repetitive awakenings.
  • The film is perfectly timed for a world sheltering at home during a pandemic.
Keep reading Show less

Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Surprising Science

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.

Keep reading Show less

Our ‘little brain’ turns out to be pretty big

The multifaceted cerebellum is large — it's just tightly folded.

Image source: Sereno, et al
Mind & Brain
  • A powerful MRI combined with modeling software results in a totally new view of the human cerebellum.
  • The so-called 'little brain' is nearly 80% the size of the cerebral cortex when it's unfolded.
  • This part of the brain is associated with a lot of things, and a new virtual map is suitably chaotic and complex.

Just under our brain's cortex and close to our brain stem sits the cerebellum, also known as the "little brain." It's an organ many animals have, and we're still learning what it does in humans. It's long been thought to be involved in sensory input and motor control, but recent studies suggests it also plays a role in a lot of other things, including emotion, thought, and pain. After all, about half of the brain's neurons reside there. But it's so small. Except it's not, according to a new study from San Diego State University (SDSU) published in PNAS (Proceedings of the National Academy of Sciences).

A neural crêpe

A new imaging study led by psychology professor and cognitive neuroscientist Martin Sereno of the SDSU MRI Imaging Center reveals that the cerebellum is actually an intricately folded organ that has a surface area equal in size to 78 percent of the cerebral cortex. Sereno, a pioneer in MRI brain imaging, collaborated with other experts from the U.K., Canada, and the Netherlands.

So what does it look like? Unfolded, the cerebellum is reminiscent of a crêpe, according to Sereno, about four inches wide and three feet long.

The team didn't physically unfold a cerebellum in their research. Instead, they worked with brain scans from a 9.4 Tesla MRI machine, and virtually unfolded and mapped the organ. Custom software was developed for the project, based on the open-source FreeSurfer app developed by Sereno and others. Their model allowed the scientists to unpack the virtual cerebellum down to each individual fold, or "folia."

Study's cross-sections of a folded cerebellum

Image source: Sereno, et al.

A complicated map

Sereno tells SDSU NewsCenter that "Until now we only had crude models of what it looked like. We now have a complete map or surface representation of the cerebellum, much like cities, counties, and states."

That map is a bit surprising, too, in that regions associated with different functions are scattered across the organ in peculiar ways, unlike the cortex where it's all pretty orderly. "You get a little chunk of the lip, next to a chunk of the shoulder or face, like jumbled puzzle pieces," says Sereno. This may have to do with the fact that when the cerebellum is folded, its elements line up differently than they do when the organ is unfolded.

It seems the folded structure of the cerebellum is a configuration that facilitates access to information coming from places all over the body. Sereno says, "Now that we have the first high resolution base map of the human cerebellum, there are many possibilities for researchers to start filling in what is certain to be a complex quilt of inputs, from many different parts of the cerebral cortex in more detail than ever before."

This makes sense if the cerebellum is involved in highly complex, advanced cognitive functions, such as handling language or performing abstract reasoning as scientists suspect. "When you think of the cognition required to write a scientific paper or explain a concept," says Sereno, "you have to pull in information from many different sources. And that's just how the cerebellum is set up."

Bigger and bigger

The study also suggests that the large size of their virtual human cerebellum is likely to be related to the sheer number of tasks with which the organ is involved in the complex human brain. The macaque cerebellum that the team analyzed, for example, amounts to just 30 percent the size of the animal's cortex.

"The fact that [the cerebellum] has such a large surface area speaks to the evolution of distinctively human behaviors and cognition," says Sereno. "It has expanded so much that the folding patterns are very complex."

As the study says, "Rather than coordinating sensory signals to execute expert physical movements, parts of the cerebellum may have been extended in humans to help coordinate fictive 'conceptual movements,' such as rapidly mentally rearranging a movement plan — or, in the fullness of time, perhaps even a mathematical equation."

Sereno concludes, "The 'little brain' is quite the jack of all trades. Mapping the cerebellum will be an interesting new frontier for the next decade."

Economists show how welfare programs can turn a "profit"

What happens if we consider welfare programs as investments?

A homeless man faces Wall Street

Spencer Platt/Getty Images
Politics & Current Affairs
  • A recently published study suggests that some welfare programs more than pay for themselves.
  • It is one of the first major reviews of welfare programs to measure so many by a single metric.
  • The findings will likely inform future welfare reform and encourage debate on how to grade success.
Keep reading Show less
Videos

Unhappy at work? How to find meaning and maintain your mental health

Finding a balance between job satisfaction, money, and lifestyle is not easy.

Scroll down to load more…
Quantcast