Big ideas.
Once a week.
Subscribe to our weekly newsletter.
Scientists identify 24 planets potentially better suited for life than Earth
The study identified superhabitable planets outside of our solar system.

- The odds are that if Earth had the right conditions for the development of life, other places probably do, too.
- Scientists have identified two dozen planets that match some items on the list of desirable traits.
- All of these planets are too far away to reach with current tech, but may be valuable research targets.
It's called the "overview effect." You know, the renewed appreciation and protectiveness that astronauts orbiting the globe come to feel looking down on our precious Earth. The sense of profound awe and gratitude that we find ourselves in a place so special among the cold, vast emptiness of space. Now a study from Washington State University (WSU) says there are lots of planets out there better than this one.
Superhabitable
The 24 candidates in their habitable zone near K dwarf stars
Credit: Schulze-Makuch, et al./Astrobiology
On the other hand, all that desirable real estate is pretty far away — none of these 24 "superhabitable" planets are less than 100 light years from Earth. They were identified in a study led by geologist Dirk Schulze-Makuch of WSU and Technical University in Berlin, Germany. He was joined in the research by astrophysicists René Heller of the Max Planck Institute for Solar System Research in Germany and Edward Guinan of Villanova University.
The open-access study is published in the journal Astrobiology.
Ignoring the possibility that other planets might be even more likely to support life than ours is, after all, like someone insisting they live in the best country in the world without having visited any others. The study puts it this way: "Neglecting this possible class of 'superhabitable' planets, however, could be considered anthropocentric and geocentric biases."
In searching for superhabitable planets among the 4,500 known candidates, the scientists were not so much looking for somewhere for us to escape to as they were spotting planets that were most likely to be populated by intelligent life. Their hope is to offer up interesting targets for future investigation by instruments such as the European Space Agency's PLATO space telescope, as well as NASA's James Webb Space Telescope and LUVOIR space observatory.
Schulze-Makuch tells WSU Insider:
"With the next space telescopes coming up, we will get more information, so it is important to select some targets. We have to focus on certain planets that have the most promising conditions for complex life. However, we have to be careful to not get stuck looking for a second Earth because there could be planets that might be more suitable for life than ours."
Before one can go searching for superhabitable planets, once must figure out what that word means.
Blame it on the sun
Credit: Tungdil Preston/Unsplash
The scientists first had to work out the type of sun a superhabitable planet would be most likely to orbit. Interestingly, they decided against dwarf type G stars — also known as "dG stars" — similar to our own sun. After all, they write, "Since it took about 3.5 billion years on Earth until complex macroscopic life appeared, and about 4 billion years for technologically advanced life (us), life on many planets orbiting dG stars may simply run out of time."
Another issue is that young dG stars spin 10 times as fast as our mature Sun now does, producing "high levels of magnetic dynamo-driven activity and very intense coronal X-ray and chromospheric FUV emissions, which makes the origin and early evolution of life challenging."
The study settles on planets orbiting type K stars. These stars are a bit cooler than ours and less luminous, but they live a long time, longer than the Sun, from 20 to 70 billion years. This would give their planets more time to get life going.
Size matters
Credit: AleksandrMorrisovich/Shutterstock
Planets with a greater mass than ours were deemed desirable for a few reasons, so long as they were not so big as to become gas giants and so on. These planets would have robust, thick atmospheres, slightly higher temperatures for nurturing life, and lots of elbow room: "This would have advantages for the distribution of species and settlements of islands and continents."
Environmental requirements
Credit: BeeBright/Shutterstock
The researchers also settled on an environmental checklist for superhabitable planets. Based on the conditions that allowed life to form on Earth, a planet would have to have the following life-supporting conditions as explained in the study:
- Temperatures —"Submarine hydrothermal systems, geothermal hot springs, brine pockets in sea ice at about −30°C, deep continental areas"
- pH — "Acid mine drainage, geothermal sulfurous sites (e.g., Yellowstone) Soda lakes, peridotite-hosted hydrothermal systems (e.g., Lost City vent)"
- Water activity — "Deep-sea brines, soda lakes, evaporate ponds, dry soils and rocks, food with high solute content"
- Lower O2 content — "Anoxic marine or lacustrine sediments, intestinal organs, early Earth environments"
- Pressure — "Deep oceanic trenches such as the 11,100 m deep Marianas Trench, Martian surface conditions (based on laboratory experiments)"
- Radiation — "No natural source of radiation on Earth at levels tolerated by D. radiodurans"
- Chemical extremes — "Submarine hydrothermal vent fluids and sulfides; some high-metal containing lakes"
We have some winners. Sort of.
Of the superhabitable candidates the study detected, none totally meet the researchers' criteria, though one has four of them, meaning it may be more likely to have life on it than Earth did, and it might be a place we could consider quite comfy.
Concludes Schulze-Makuch, "It's sometimes difficult to convey this principle of superhabitable planets because we think we have the best planet. We have a great number of complex and diverse lifeforms, and many that can survive in extreme environments. It is good to have adaptable life, but that doesn't mean that we have the best of everything."
- Habitable exoplanet: Ross 128 b could support life - Big Think ›
- 10 of the strangest exoplanets in the universe - Big Think ›
- An Earth-sized planet found in the habitable zone of a nearby star ›
- There may be habitable planets all over the galaxy - Big Think ›
How New York's largest hospital system is predicting COVID-19 spikes
Northwell Health is using insights from website traffic to forecast COVID-19 hospitalizations two weeks in the future.
- The machine-learning algorithm works by analyzing the online behavior of visitors to the Northwell Health website and comparing that data to future COVID-19 hospitalizations.
- The tool, which uses anonymized data, has so far predicted hospitalizations with an accuracy rate of 80 percent.
- Machine-learning tools are helping health-care professionals worldwide better constrain and treat COVID-19.
The value of forecasting
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTA0Njk2OC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyMzM2NDQzOH0.rid9regiDaKczCCKBsu7wrHkNQ64Vz_XcOEZIzAhzgM/img.jpg?width=980" id="2bb93" class="rm-shortcode" data-rm-shortcode-id="31345afbdf2bd408fd3e9f31520c445a" data-rm-shortcode-name="rebelmouse-image" data-width="1546" data-height="1056" />Northwell emergency departments use the dashboard to monitor in real time.
Credit: Northwell Health
<p>One unique benefit of forecasting COVID-19 hospitalizations is that it allows health systems to better prepare, manage and allocate resources. For example, if the tool forecasted a surge in COVID-19 hospitalizations in two weeks, Northwell Health could begin:</p><ul><li>Making space for an influx of patients</li><li>Moving personal protective equipment to where it's most needed</li><li>Strategically allocating staff during the predicted surge</li><li>Increasing the number of tests offered to asymptomatic patients</li></ul><p>The health-care field is increasingly using machine learning. It's already helping doctors develop <a href="https://care.diabetesjournals.org/content/early/2020/06/09/dc19-1870" target="_blank">personalized care plans for diabetes patients</a>, improving cancer screening techniques, and enabling mental health professionals to better predict which patients are at <a href="https://healthitanalytics.com/news/ehr-data-fuels-accurate-predictive-analytics-for-suicide-risk" target="_blank" rel="noopener noreferrer">elevated risk of suicide</a>, to name a few applications.</p><p>Health systems around the world have already begun exploring how <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315944/" target="_blank" rel="noopener noreferrer">machine learning can help battle the pandemic</a>, including better COVID-19 screening, diagnosis, contact tracing, and drug and vaccine development.</p><p>Cruzen said these kinds of tools represent a shift in how health systems can tackle a wide variety of problems.</p><p>"Health care has always used the past to predict the future, but not in this mathematical way," Cruzen said. "I think [Northwell Health's new predictive tool] really is a great first example of how we should be attacking a lot of things as we go forward."</p>Making machine-learning tools openly accessible
<p>Northwell Health has made its predictive tool <a href="https://github.com/northwell-health/covid-web-data-predictor" target="_blank">available for free</a> to any health system that wishes to utilize it.</p><p>"COVID is everybody's problem, and I think developing tools that can be used to help others is sort of why people go into health care," Dr. Cruzen said. "It was really consistent with our mission."</p><p>Open collaboration is something the world's governments and health systems should be striving for during the pandemic, said Michael Dowling, Northwell Health's president and CEO.</p><p>"Whenever you develop anything and somebody else gets it, they improve it and they continue to make it better," Dowling said. "As a country, we lack data. I believe very, very strongly that we should have been and should be now working with other countries, including China, including the European Union, including England and others to figure out how to develop a health surveillance system so you can anticipate way in advance when these things are going to occur."</p><p>In all, Northwell Health has treated more than 112,000 COVID patients. During the pandemic, Dowling said he's seen an outpouring of goodwill, collaboration, and sacrifice from the community and the tens of thousands of staff who work across Northwell.</p><p>"COVID has changed our perspective on everything—and not just those of us in health care, because it has disrupted everybody's life," Dowling said. "It has demonstrated the value of community, how we help one another."</p>3,000-pound Triceratops skull unearthed in South Dakota
"You dream about these kinds of moments when you're a kid," said lead paleontologist David Schmidt.
Excavation of a triceratops skull in South Dakota.
- The triceratops skull was first discovered in 2019, but was excavated over the summer of 2020.
- It was discovered in the South Dakota Badlands, an area where the Triceratops roamed some 66 million years ago.
- Studying dinosaurs helps scientists better understand the evolution of all life on Earth.
Credit: David Schmidt / Westminster College
<p style="margin-left: 20px;">"We had to be really careful," Schmidt told St. Louis Public Radio. "We couldn't disturb anything at all, because at that point, it was under law enforcement investigation. They were telling us, 'Don't even make footprints,' and I was thinking, 'How are we supposed to do that?'"</p><p>Another difficulty was the mammoth size of the skull: about 7 feet long and more than 3,000 pounds. (For context, the largest triceratops skull ever unearthed was about <a href="https://www.tandfonline.com/doi/abs/10.1080/02724634.2010.483632" target="_blank">8.2 feet long</a>.) The skull of Schmidt's dinosaur was likely a <em>Triceratops prorsus, </em>one of two species of triceratops that roamed what's now North America about 66 million years ago.</p>Credit: David Schmidt / Westminster College
<p>The triceratops was an herbivore, but it was also a favorite meal of the T<em>yrannosaurus rex</em>. That probably explains why the Dakotas contain many scattered triceratops bone fragments, and, less commonly, complete bones and skulls. In summer 2019, for example, a separate team on a dig in North Dakota made <a href="https://www.nytimes.com/2019/07/26/science/triceratops-skull-65-million-years-old.html" target="_blank">headlines</a> after unearthing a complete triceratops skull that measured five feet in length.</p><p>Michael Kjelland, a biology professor who participated in that excavation, said digging up the dinosaur was like completing a "multi-piece, 3-D jigsaw puzzle" that required "engineering that rivaled SpaceX," he jokingly told the <a href="https://www.nytimes.com/2019/07/26/science/triceratops-skull-65-million-years-old.html" target="_blank">New York Times</a>.</p>Morrison Formation in Colorado
James St. John via Flickr
Triceratops illustration
Credit: Nobu Tamura/Wikimedia Commons |
World's oldest work of art found in a hidden Indonesian valley
Archaeologists discover a cave painting of a wild pig that is now the world's oldest dated work of representational art.
Pig painting at Leang Tedongnge in Indonesia, made at 45,500 years ago.
- Archaeologists find a cave painting of a wild pig that is at least 45,500 years old.
- The painting is the earliest known work of representational art.
- The discovery was made in a remote valley on the Indonesian island of Sulawesi.
Oldest Cave Art Found in Sulawesi
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="a9734e306f0914bfdcbe79a1e317a7f0"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/b-wAYtBxn7E?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>What can Avicenna teach us about the mind-body problem?
The Persian polymath and philosopher of the Islamic Golden Age teaches us about self-awareness.
The incredible physics behind quantum computing
Can computers do calculations in multiple universes? Scientists are working on it. Step into the world of quantum computing.
