Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

NASA shuts down the incredible Spitzer Space Telescope

Goodnight, sweet Spitzer.

Image source: NASA/JPL-Caltech
  • One of NASA's most important telescopes has been put to sleep in space.
  • The infrared Spitzer Space telescope made a number of science-shaking discoveries over the course of its 16-year lifespan.
  • Without Spitzer, we wouldn't know about the TRAPPIST-1 exoplanets.

It was one of NASA's four Great Observatories. Each of the telescopes was tuned to its own wavelength of light, watching the universe in its own way. Together, the quartet presented to scientists a universe of unprecedented detail. There was the Hubble Space Telescope, the Chandra X-ray Observatory, the Compton Gamma Ray Observatory, and the Spitzer Space Telescope, capturing infrared light. Last Thursday, at 2:30 p.m. PST, Spitzer was decommissioned after 16 years of invaluable observations, and 11 years after its original mission ended. It now continues to orbit the Sun in safe mode some 266,600,037 kilometers from Earth.

While not as well-known as other telescopes, particularly the Hubble, Spitzer's contributions were nonetheless equally as important. According to NASA's Thomas Zurbuchen, "Spitzer has taught us about entirely new aspects of the cosmos and taken us many steps further in understanding how the universe works, addressing questions about our origins, and whether or not are we alone." Moreover, Zurbuchen points out, "This Great Observatory has also identified some important and new questions and tantalizing objects for further study, mapping a path for future investigations to follow. Its immense impact on science certainly will last well beyond the end of its mission."

Spitzer will be replaced by the Webb telescope, launching in 2021.

Spitzer, take a bow

Spitzer image of the Tarantula Nebula

Spitzer image of the Tarantula Nebula

Image source: NASA/JPL-Caltech

Spitzer weighs about 865 kilograms (nearly a ton) and is about 4 meters tall. For its sensors to detect infrared light, their temperature control is critical — they have to operate at about 5 degrees above absolute zero (That's -450 F or -268 C). Other equipment on the telescope needs to be relatively warms, so its body is divided into the frigid Cryogenic Telescope Assembly and the spacecraft itself.

In the Cryogenic Telescope Assembly is a 0.85-meter telescope, as well as a multiple instrument chamber containing the Infrared Array Camera, the Infrared Spectrograph, the Multiband Imaging Photometer, and the Cryostat, in addition to the Outer-Shell Group. The Assembly was cooled with liquid helium, though by the end of the original mission in 2009 it had been depleted. Since that time, just two of the Infrared Array Camera's four wavelength bands have been scanning the stars.

The spacecraft itself contains what you'd expect: navigation, communication, solar panels, and so on.

TRAPPIST-1 exoplanets

Artist representation of Trappist-1 system

Representation of Trappist-1 system

Image source: NASA/JPL-Caltech

Probably the most famous of Spitzer's accomplishment is its discovery of the TRAPPIST-1 exoplanets, seven Earth-sized bodies orbiting a single star. Three of them occupy the habitable zone around their sun, which is a bit cooler than ours, and are potentially capable of supporting life. Spitzer provided some 500 hours-worth of observations of the TRAPPIST-1 system.

Big babies

Big mature galaxies as seen by Spitzer in an early universe.

Big mature galaxies as seen by Spitzer in an early universe

Image source: NASA/JPL-Caltech/ESA

Spitzer was especially good at detecting distant, ancient young galaxies. The oldest infrared light it captured was from about 13.4 billion years ago, just 400 million years after the universe's birth. Spitzer also revealed and identified a set of "big baby" galaxies that were unexpectedly well-developed for their relative youth — the implication being that larger galaxies may not have resulted from collisions of smaller ones after all, but came together quickly on their own in the early days of the universe.

Great buckyballs in space!

Artist rendering of NGC 2440 nebula

Artist rendering of NGC 2440 nebula

Image source: NASA/JPL-Caltech

Buckyballs are spherical carbon molecules whose hexagon-pentagon-patterned surfaces make them look like soccer balls. They belong to a molecule class called buckminsterfullerenes, named after the famous dome-shaped buildings designed by architect Buckminster Fuller. Spitzer found buckyballs in space orbiting a dying star called Tc 1.

So much more

JPL photo of Spitzer's final ovation

The final ovation

Image source: NASA/JPL-Caltech

Spitzer's been incredibly productive over the years, and NASA's compiled a page of 15 of its most notable accomplishments. "Everyone who has worked on this mission should be extremely proud today," said Spitzer Project Manager Joseph Hunt. "There are literally hundreds of people who contributed directly to Spitzer's success, and thousands who used its scientific capabilities to explore the universe. We leave behind a powerful scientific and technological legacy."

LIVE TOMORROW | Jordan Klepper: Comedians vs. the apocalypse

Join The Daily Show comedian Jordan Klepper and elite improviser Bob Kulhan live at 1 pm ET on Tuesday, July 14!

Big Think LIVE

Add event to calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo

Keep reading Show less

DMT drug study investigates the ‘entities’ people meet while tripping

Why do so many people encounter beings after smoking large doses of DMT?

Pixabay
Mind & Brain
  • DMT is arguably the most powerful psychedelic drug on the planet, capable of producing intense hallucinations.
  • Researchers recently surveyed more than 2,000 DMT users about their encounters with 'entities' while tripping, finding that respondents often considered these strange encounters to be positive and meaningful.
  • The majority of respondents believed the beings they encountered were not hallucinations.
Keep reading Show less

LGBTQ+ community sees spike in first-time depression in wake of coronavirus​

Gender and sexual minority populations are experiencing rising anxiety and depression rates during the pandemic.

Photo by Chip Somodevilla/Getty Images
Coronavirus
  • Anxiety and depression rates are spiking in the LGBTQ+ community, and especially in individuals who hadn't struggled with those issues in the past.
  • Overall, depression increased by an average PHQ-9 score of 1.21 and anxiety increased by an average GAD-7 score of 3.11.
  • The researchers recommended that health care providers check in with LGBTQ+ patients about stress and screen for mood and anxiety disorders—even among those with no prior history of anxiety or depression.
Keep reading Show less

The mind-blowing science of black holes

What we know about black holes is both fascinating and scary.

Videos
  • When it comes to black holes, science simultaneously knows so much and so little, which is why they are so fascinating. Focusing on what we do know, this group of astronomers, educators, and physicists share some of the most incredible facts about the powerful and mysterious objects.
  • A black hole is so massive that light (and anything else it swallows) can't escape, says Bill Nye. You can't see a black hole, theoretical physicists Michio Kaku and Christophe Galfard explain, because it is too dark. What you can see, however, is the distortion of light around it caused by its extreme gravity.
  • Explaining one unsettling concept from astrophysics called spaghettification, astronomer Michelle Thaller says that "If you got close to a black hole there would be tides over your body that small that would rip you apart into basically a strand of spaghetti that would fall down the black hole."

Scroll down to load more…
Quantcast