Spiders lace webs in toxins to paralyze prey

Just what every arachnophobe needed to hear.

banana spider on web

The Banana Spider

Luciano Marra from São Paulo, Brasil - Aranha de Teia (Nephila clavipes), CC BY-SA 2.0
  • A new study suggests some spiders might lace their webs with neurotoxins similar to the ones in their venom.
  • The toxins were shown to be effective at paralyzing insects injected with them.
  • Previous studies showed that other spiders lace their webs with chemicals that repel large insects.

Everybody knows how spiders catch bugs to eat. They weave a sticky web and wait for something to land in it. These webs are remarkably tough, elastic, and have been the focus of engineers hoping to replicate their properties for years. It all seems rather straightforward, as trap setting goes.

But in a twist that will send a chill down the spine of arachnophobes, a new study suggests that some spiderwebs assure their prey won't get away by adding neurotoxins to their webs.

Just what we needed to know before walking into another spider web

The study, published in the Journal of Proteome Research, was carried out by Biochemical Ecologist Mario Palma of the University of São Paulo State, their Ph.D. student, Franciele Esteves, and their colleagues. They focused on the webs of the striking T. clavipes, also known as the Banana Spider.

These spiders are orb weavers, known for their complex and often large webs. They can have up to seven glands that produce silk for various purposes, including catching prey, shielding themselves, protecting their eggs, mating rituals, and making webbing to walk on.

The researchers examined the spiders' various web producing glands. This revealed a spectrum of neurotoxin-like proteins not dissimilar to those found in the spider's venom present on the silk. On the web, these proteins are suspended in oily, fatty acids.

Following up on this discovery, they tested the proteins' effectiveness on insects. Most of those test subjects were paralyzed less than a minute after exposure, and a few died. These experiences relied on the injection of the proteins rather than on absorption but did demonstrate their capacity. Further tests showed that the fatty acids the proteins reside in could allow them to enter the body of prey insects.

Previous studies demonstrated that some spiders can add certain chemicals to their webs to repel larger insects which could cause the spider trouble. So, the idea that some spiders are adding another chemical to the mix, this time to cause paralysis, isn't too far-fetched.

However, some scientists aren't so sure about all this. They call for further study into the mechanism of action to demonstrate that these proteins cause paralysis and rule out potential other applications.

So, those of you who like animal facts can take pride in knowing that spider webs sometimes have poison in them to stun their prey. Those of you who are terrified of spiders can fear the same information. Either way, walking into a spider web just got even less pleasant.

This is what aliens would 'hear' if they flew by Earth

A Mercury-bound spacecraft's noisy flyby of our home planet.

Image source: sdecoret on Shutterstock/ESA/Big Think
Surprising Science
  • There is no sound in space, but if there was, this is what it might sound like passing by Earth.
  • A spacecraft bound for Mercury recorded data while swinging around our planet, and that data was converted into sound.
  • Yes, in space no one can hear you scream, but this is still some chill stuff.

First off, let's be clear what we mean by "hear" here. (Here, here!)

Sound, as we know it, requires air. What our ears capture is actually oscillating waves of fluctuating air pressure. Cilia, fibers in our ears, respond to these fluctuations by firing off corresponding clusters of tones at different pitches to our brains. This is what we perceive as sound.

All of which is to say, sound requires air, and space is notoriously void of that. So, in terms of human-perceivable sound, it's silent out there. Nonetheless, there can be cyclical events in space — such as oscillating values in streams of captured data — that can be mapped to pitches, and thus made audible.

BepiColombo

Image source: European Space Agency

The European Space Agency's BepiColombo spacecraft took off from Kourou, French Guyana on October 20, 2019, on its way to Mercury. To reduce its speed for the proper trajectory to Mercury, BepiColombo executed a "gravity-assist flyby," slinging itself around the Earth before leaving home. Over the course of its 34-minute flyby, its two data recorders captured five data sets that Italy's National Institute for Astrophysics (INAF) enhanced and converted into sound waves.

Into and out of Earth's shadow

In April, BepiColombo began its closest approach to Earth, ranging from 256,393 kilometers (159,315 miles) to 129,488 kilometers (80,460 miles) away. The audio above starts as BepiColombo begins to sneak into the Earth's shadow facing away from the sun.

The data was captured by BepiColombo's Italian Spring Accelerometer (ISA) instrument. Says Carmelo Magnafico of the ISA team, "When the spacecraft enters the shadow and the force of the Sun disappears, we can hear a slight vibration. The solar panels, previously flexed by the Sun, then find a new balance. Upon exiting the shadow, we can hear the effect again."

In addition to making for some cool sounds, the phenomenon allowed the ISA team to confirm just how sensitive their instrument is. "This is an extraordinary situation," says Carmelo. "Since we started the cruise, we have only been in direct sunshine, so we did not have the possibility to check effectively whether our instrument is measuring the variations of the force of the sunlight."

When the craft arrives at Mercury, the ISA will be tasked with studying the planets gravity.

Magentosphere melody

The second clip is derived from data captured by BepiColombo's MPO-MAG magnetometer, AKA MERMAG, as the craft traveled through Earth's magnetosphere, the area surrounding the planet that's determined by the its magnetic field.

BepiColombo eventually entered the hellish mangentosheath, the region battered by cosmic plasma from the sun before the craft passed into the relatively peaceful magentopause that marks the transition between the magnetosphere and Earth's own magnetic field.

MERMAG will map Mercury's magnetosphere, as well as the magnetic state of the planet's interior. As a secondary objective, it will assess the interaction of the solar wind, Mercury's magnetic field, and the planet, analyzing the dynamics of the magnetosphere and its interaction with Mercury.

Recording session over, BepiColombo is now slipping through space silently with its arrival at Mercury planned for 2025.

Photo by Martin Adams on Unsplash
Culture & Religion
She was walking down the forest path with a roll of white cloth in her hands. It was trailing behind her like a long veil.
Keep reading Show less

NASA finds water on sunlit moon surface for first time

Water may be far more abundant on the lunar surface than previously thought.

Lunar surface

Credit: Helen_f via AdobeStock
Surprising Science
  • Scientists have long thought that water exists on the lunar surface, but it wasn't until 2018 that ice was first discovered on the moon.
  • A study published Monday used NASA's Stratospheric Observatory for Infrared Astronomy to confirm the presence of molecular water..
  • A second study suggests that shadowy regions on the lunar surface may also contain more ice than previously thought.
Keep reading Show less
Scroll down to load more…
Quantcast