Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Could Earth have a 'shadow' biosphere?

Some scientists think there may be a hidden, second form of life living right under our noses.

Microbial life
Shutterstock
  • All life on Earth shares some basic characteristics, such as being carbon-based; using DNA, RNA, and proteins to function; and so on.
  • Many of these characteristics are simply the only ones that could work in Earth's environment, but there are also a surprising number of seemingly arbitrary features of life.
  • Under the shadow biosphere theory, some scientists argue that alternative forms of life exist right here on Earth, undetected simply because we don't know to look for them.


In 2009, a NASA researcher isolated a peculiar bacteria from Mono Lake in California. Mono Lake is hypersaline and rich in arsenic, making it a difficult place for life to eke out an existence with the exception of some hard-scrabbling brine shrimp, the migratory birds that feed upon them, and some very interesting extremophile bacteria.

The researcher believed that this particular bacteria, dubbed GFAJ-1, was capable of an incredible trick. All life on Earth — and consequentially, all life that humans know of — uses phosphorus in its DNA. But when GFAJ-1 had no phosphorus, it seemed able to grow using just arsenic. The closest analogy would be to say that the researchers had just discovered alien life right on Earth.

There was a flurry of excitement and activity amongst the scientific community, but it was unfortunately short-lived; further research failed to replicate the experiment, and it appeared that GFAJ-1 was simply remarkably resistant to arsenic and had been surviving on trace amounts of phosphorus that had contaminated the culture.

This episode raises a question that bothers molecular biologists and astrobiologists alike; why is life the way it is? Why couldn't GFAJ-1 have used that arsenic molecule in place of the standard phosphorus molecule? There are plenty of hypothetical forms of life that simply couldn't exist under the conditions on Earth, such as silicon-based life rather than our carbon-based one, but there are also many, many variations on Earth's carbon-based life that should do fine.

These questions lead to another: What if there are indeed other forms of microbial life on Earth, unnoticed but existing in parallel with our own? This hypothetical scenario is referred to as the shadow biosphere.

Mysterious co-inhabitants of Earth

GFAJ-1

Mono Lake and GFAJ-1 (inset).

NASA

If Earth hosted not one, but two fundamentally different forms of life, it would substantially increase the odds of alien life existing out in the universe. If a shadow biosphere existed, then it would stand to reason that when a planet exists under the right conditions, life doesn't just have a shot at emerging, it's practically guaranteed.

But then again, this idea also seems extremely far-fetched. If a second form of life existed in parallel alongside our own, one would expect that we would have detected it by now. To that point, proponents argue that our techniques for detecting life are based on our current understanding of it. Hypothetical, alternate microbial life forms could go undetected.

It is important to note that the majority of biologists do not endorse the idea of a shadow biosphere. There is little evidence to suggest that such a biosphere exists, and it is extremely difficult to prove a negative, so we are left with assuming that ours is the only format that life takes. Still, contemplating the shadow biosphere is a useful exercise, as it may help us understand alien life. Not to mention that the shadow biosphere may in fact be real.

What would the shadow biosphere look like?

All life relies on DNA, RNA, and proteins to function. DNA and RNA are composed of 5 nucleobases in total, and proteins are composed of 20 amino acids. The problem is that these 5 nucleobases and 20 amino acids seem arbitrary — there are plenty of other nucleobases and hundreds of naturally occurring and abundant amino acids. Meteorites have even landed on Earth loaded with these apparently extraneous amino acids and nucleobases. It's plausible that alternate forms of life could use different combinations of these building blocks.

Another possible candidate for the shadow biosphere would be RNA-based life. Both DNA and RNA carry genetic information, and life on Earth uses both to function. Unlike DNA, RNA only has a single strand, uses the nucleobase uracil rather than thymine, and directly codes for amino acids.

Because RNA is structurally simpler than DNA, some scientists argue that predominantly RNA-based life evolved first on Earth, often referred to as the "RNA World." Under a shadow biosphere, such life would have persisted, branching off from what would eventually become DNA-based life.

There could also be organisms with the opposite chirality to ours. Perhaps one of the most arbitrary characteristics that life on Earth exhibits is its chirality, or handedness. In molecular biology, the shape of a molecule plays a large part in its function, but some shapes are simply mirror images of the other, like our left hand is a mirror image of our right.

These molecules are functionally the same, they just need the right kind of molecular machinery to work. Life on Earth has somehow decided that left-handed amino acids make up proteins and right-handed sugars make up our DNA and RNA, but there's no reason why this couldn't be flipped. We may be exposed to molecular life with the opposite chirality to ours and not even know it; none of our cells could interact with a molecule using the "wrong" hand to ours.

Unfortunately, we will likely only be able to shut the book on the shadow biosphere if we find life that deviates from the formula that seems to work so well on Earth. Proving the absence of all other varieties of life on Earth is an impossible task, so we will likely be left to speculate. If, however, we do discover evidence of a shadow biosphere in some of Earth's stranger nooks and crannies, we will have to look at life in the universe from an entirely new point of view.

Radical innovation: Unlocking the future of human invention

Ready to see the future? Nanotronics CEO Matthew Putman talks innovation and the solutions that are right under our noses.

Big Think LIVE

Innovation in manufacturing has crawled since the 1950s. That's about to speed up.

Keep reading Show less

Your body’s full of stuff you no longer need. Here's a list.

Evolution doesn't clean up after itself very well.

Image source: Ernst Haeckel
Surprising Science
  • An evolutionary biologist got people swapping ideas about our lingering vestigia.
  • Basically, this is the stuff that served some evolutionary purpose at some point, but now is kind of, well, extra.
  • Here are the six traits that inaugurated the fun.
Keep reading Show less

Quantum particles timed as they tunnel through a solid

A clever new study definitively measures how long it takes for quantum particles to pass through a barrier.

Image source: carlos castilla/Shutterstock
  • Quantum particles can tunnel through seemingly impassable barriers, popping up on the other side.
  • Quantum tunneling is not a new discovery, but there's a lot that's unknown about it.
  • By super-cooling rubidium particles, researchers use their spinning as a magnetic timer.

When it comes to weird behavior, there's nothing quite like the quantum world. On top of that world-class head scratcher entanglement, there's also quantum tunneling — the mysterious process in which particles somehow find their way through what should be impenetrable barriers.

Exactly why or even how quantum tunneling happens is unknown: Do particles just pop over to the other side instantaneously in the same way entangled particles interact? Or do they progressively tunnel through? Previous research has been conflicting.

That quantum tunneling occurs has not been a matter of debate since it was discovered in the 1920s. When IBM famously wrote their name on a nickel substrate using 35 xenon atoms, they used a scanning tunneling microscope to see what they were doing. And tunnel diodes are fast-switching semiconductors that derive their negative resistance from quantum tunneling.

Nonetheless, "Quantum tunneling is one of the most puzzling of quantum phenomena," says Aephraim Steinberg of the Quantum Information Science Program at Canadian Institute for Advanced Research in Toronto to Live Science. Speaking with Scientific American he explains, "It's as though the particle dug a tunnel under the hill and appeared on the other."

Steinberg is a co-author of a study just published in the journal Nature that presents a series of clever experiments that allowed researchers to measure the amount of time it takes tunneling particles to find their way through a barrier. "And it is fantastic that we're now able to actually study it in this way."

Frozen rubidium atoms

Image source: Viktoriia Debopre/Shutterstock/Big Think

One of the difficulties in ascertaining the time it takes for tunneling to occur is knowing precisely when it's begun and when it's finished. The authors of the new study solved this by devising a system based on particles' precession.

Subatomic particles all have magnetic qualities, and they spin, or "precess," like a top when they encounter an external magnetic field. With this in mind, the authors of the study decided to construct a barrier with a magnetic field, causing any particles passing through it to precess as they did so. They wouldn't precess before entering the field or after, so by observing and timing the duration of the particles' precession, the researchers could definitively identify the length of time it took them to tunnel through the barrier.

To construct their barrier, the scientists cooled about 8,000 rubidium atoms to a billionth of a degree above absolute zero. In this state, they form a Bose-Einstein condensate, AKA the fifth-known form of matter. When in this state, atoms slow down and can be clumped together rather than flying around independently at high speeds. (We've written before about a Bose-Einstein experiment in space.)

Using a laser, the researchers pusehd about 2,000 rubidium atoms together in a barrier about 1.3 micrometers thick, endowing it with a pseudo-magnetic field. Compared to a single rubidium atom, this is a very thick wall, comparable to a half a mile deep if you yourself were a foot thick.

With the wall prepared, a second laser nudged individual rubidium atoms toward it. Most of the atoms simply bounced off the barrier, but about 3% of them went right through as hoped. Precise measurement of their precession produced the result: It took them 0.61 milliseconds to get through.

Reactions to the study

Scientists not involved in the research find its results compelling.

"This is a beautiful experiment," according to Igor Litvinyuk of Griffith University in Australia. "Just to do it is a heroic effort." Drew Alton of Augustana University, in South Dakota tells Live Science, "The experiment is a breathtaking technical achievement."

What makes the researchers' results so exceptional is their unambiguity. Says Chad Orzel at Union College in New York, "Their experiment is ingeniously constructed to make it difficult to interpret as anything other than what they say." He calls the research, "one of the best examples you'll see of a thought experiment made real." Litvinyuk agrees: "I see no holes in this."

As for the researchers themselves, enhancements to their experimental apparatus are underway to help them learn more. "We're working on a new measurement where we make the barrier thicker," Steinberg said. In addition, there's also the interesting question of whether or not that 0.61-millisecond trip occurs at a steady rate: "It will be very interesting to see if the atoms' speed is constant or not."

Self-driving cars to race for $1.5 million at Indianapolis Motor Speedway ​

So far, 30 student teams have entered the Indy Autonomous Challenge, scheduled for October 2021.

Illustration of cockpit of a self-driving car

Indy Autonomous Challenge
Technology & Innovation
  • The Indy Autonomous Challenge will task student teams with developing self-driving software for race cars.
  • The competition requires cars to complete 20 laps within 25 minutes, meaning cars would need to average about 110 mph.
  • The organizers say they hope to advance the field of driverless cars and "inspire the next generation of STEM talent."
Keep reading Show less
Mind & Brain

The dangers of the chemical imbalance theory of depression

A new Harvard study finds that the language you use affects patient outcome.

Scroll down to load more…
Quantcast