Scientists discover how to use time crystals to power superconductors

Physicists propose using time crystals to bring about a quantum computing revolution.

Scientists discover how to use time crystals to power superconductors
Adobe stock.
  • A team of scientists proposes using time crystals to power topological superconductors.
  • The approach could lead to error-free quantum computers.
  • Time crystals appear to break laws of physics.


The concept of time crystals comes from the realm of counterintuitive mind-melding physics ideas that may actually turn out to have real-world applications. Now comes news that a paper proposes merging time crystals with topological superconductors for applications in error-free quantum computing, extremely precise timekeeping and more.

Time crystals were first proposed as hypothetical structures by the Nobel-Prize winning theoretical physicist Frank Wilczek and MIT physicists in 2012. The remarkable feature of time crystals is that they would would move without using energy. As such they would appear to break the fundamental physics law of time-translation symmetry. They would move while staying in their ground states, when they are at their lowest energy, appearing to be in a kind of perpetual motion. Wilczek offered mathematical proof that showed how atoms of crystallizing matter could regularly form repeating lattices in time, while not consuming or producing any energy.

Time crystals have since been experimentally created in various labs.

Now researchers at the California Institute of Technology (Caltech) and the Weizmann Institute in Israel found that theoretically you can create a system that combines time crystals with so-called topological superconductors.

The field of topology looks at the properties of objects that are unchangeable (or "invariant') despite deformations like stretching, twisting, or bending. In a topological insulator, the properties linked to the electron wave function would be considered topologically invariant.

As the scientists themselves explain, "Time crystals form when arbitrary physical states of a periodically driven system spontaneously break discrete time-translation symmetry." What the researchers noticed is that when they introduced "one-dimensional time-crystalline topological superconductors" they found a fascinating interaction where "time-translation symmetry breaking and topological physics intertwine—yielding anomalous Floquet Majorana modes that are not possible in free-fermion systems."

Majorana fermions are particles that have their own anti-particles.

How to tie a quantum knot

"Physicists Gil Refael and Jason Alicea explain the unique properties of electrons constrained to a 2 Dimensional world, and how they can be used to make noise-proof Quantum Computers."

The research was led by Jason Alicea and Aaron Chew from CalTech, as well as David Mross from the Weizmann Institute in Israel.

While studying Majorana fermions, the team observed that it is possible to enhance topological superconductors by coupling them to magnetic degrees of freedom that could be controlled. "Then we realized that by turning those magnetic degrees of freedom into a time crystal, topological superconductivity responds in remarkable ways," shared Alicea.

Aaron Chew (left) and David Mross (right).

Credit: Jason Alicea

One way the phenomen noticed by the scientists could be potentially exploited is to create more stable qubits - the bit of quantum information in quantum computing. The race to create qubits is at the threshold of bringing on a true quantum technology revolution, as writes Popular Mechanics.

"It's tempting to imagine generating some useful quantum operations by controlling the magnetic degrees of freedom that intertwine with the topological physics. Or perhaps certain noise channels can be suppressed by exploiting time crystals," said Alicea.

Check out their new paper in Physical Review Letters.

Why the number 137 is one of the greatest mysteries in physics

Famous physicists like Richard Feynman think 137 holds the answers to the Universe.

Pixabay
Surprising Science
  • The fine structure constant has mystified scientists since the 1800s.
  • The number 1/137 might hold the clues to the Grand Unified Theory.
  • Relativity, electromagnetism and quantum mechanics are unified by the number.
Keep reading Show less

Americans under 40 want major reforms, expanded Supreme Court

Younger Americans support expanding the Supreme Court and serious political reforms, says new poll.

Demonstrators In Louisville calling for justice for Breonna Taylor.

Credit: Jon Cherry/Getty Images
Politics & Current Affairs
  • Americans under 40 largely favor major political reforms, finds a new survey.
  • The poll revealed that most would want to expand the Supreme Court, impose terms limits, and make it easier to vote.
  • Millennials are more liberal and reform-centered than Generation Z.
Keep reading Show less

Can you solve what an MIT professor once called 'the hardest logic puzzle ever'?

Logic puzzles can teach reasoning in a fun way that doesn't feel like work.

Credit: Prostock-studio via Adobe Stock
Mind & Brain
  • Logician Raymond Smullyan devised tons of logic puzzles, but one was declared by another philosopher to be the hardest of all time.
  • The problem, also known as the Three Gods Problem, is solvable, even if it doesn't seem to be.
  • It depends on using complex questions to assure that any answer given is useful.
Keep reading Show less
Scroll down to load more…
Quantcast