Scientists create a 'lifelike' material that has metabolism and can self-reproduce

An innovation may lead to lifelike evolving machines.

Scientists create a 'lifelike' material that has metabolism and can self-reproduce
Shogo Hamada/Cornell University
  • Scientists at Cornell University devise a material with 3 key traits of life.
  • The goal for the researchers is not to create life but lifelike machines.
  • The researchers were able to program metabolism into the material's DNA.

Cornell University engineers have created an artificial material that has three key traits of life — metabolism, self-assembly and organization. The engineers were able to pull off such a feat by using DNA in order to make machines from biomaterials that would have characteristics of alive things.

Dubbing their process DASH for "DNA-based Assembly and Synthesis of Hierarchical" materials, the scientists made a DNA material that has metabolism — the set of chemical processes that convert food into energy necessary for the maintenance of life.

The goal for the scientists is not to create a lifeform but a machine with lifelike characteristics, with Dan Luo, professor of biological and environmental engineering, pointing out "We are not making something that's alive, but we are creating materials that are much more lifelike than have ever been seen before."

The major innovation here is the programmed metabolism that is coded into the DNA materials. The set of instructions for metabolism and autonomous regeneration allows the material to grow on its own.

In their paper, the scientists described the metabolism as the system by which "the materials comprising life are synthesized, assembled, dissipated, and decomposed autonomously in a controlled, hierarchical manner using biological processes."

To keep going, a living organism must be able to generate new cells, while discarding old ones and waste. It is this process that the Cornell scientists duplicated using DASH. They devised a biomaterial that can arise on its own from nanoscale building blocks. It can arrange itself into polymers first and into mesoscale shapes after.

The DNA molecules in the materials were duplicated hundreds of thousands of times, resulting in chains of repeating DNA that were a few millimeters in length. The solution with the reaction was injected into a special microfluidic device that facilitated biosynthesis.

This flow washed over the materials, causing DNA to synthesize its own strands. The material even had its own locomotion, with the front end growing while the tail end was degrading, making it creep forth.

This fact allowed the researchers to have portions of the materials competing against each other.

"The designs are still primitive, but they showed a new route to create dynamic machines from biomolecules. We are at a first step of building lifelike robots by artificial metabolism," explained Shogo Hamada, the lead and co-corresponding author of the paper as well as a lecturer and research associate in the Luo lab. "Even from a simple design, we were able to create sophisticated behaviors like racing. Artificial metabolism could open a new frontier in robotics."
Generated DASH patterns.

Credit: Shogo Hamada / Cornell University

The material that was created lasted for two cycles of synthesis and degradation but the longevity can be extended, think the researchers. This could lead to more generations of the material, eventually resulting in a "lifelike self-reproducing machines," said Hamada.

He also foresees that the system can result in a "self-evolutionary possibility."

Next for the material? The engineers are looking at how to get it to react to stimuli and be able to seek out light or food all on its own. They also want it to be able to avoid harmful stimuli.

​ Check out the video of Professor Luo explaining their achievement here —

You can check out the new paper "Dynamic DNA Material With Emergent Locomotion Behavior Powered by Artificial Metabolism," in the April 10th issues of Science Robotics.

New study cautions marijuana beginners to 26 adverse reactions

Researchers documented the most common negative side effects of smoking weed, and who might be most susceptible.

Surprising Science
  • A team of researchers identified a total of 26 possible adverse reactions to cannabis use.
  • Coughing fits, anxiety, and paranoia are among the top three most common adverse reactions to smoking weed.
  • It was the people who smoke on a less frequent basis who were more likely to have had the bad experiences.
Keep reading Show less

Coffee and green tea may lower death risk for some adults

Tea and coffee have known health benefits, but now we know they can work together.


Credit: NIKOLAY OSMACHKO from Pexels
Surprising Science
  • A new study finds drinking large amounts of coffee and tea lowers the risk of death in some adults by nearly two thirds.
  • This is the first study to suggest the known benefits of these drinks are additive.
  • The findings are great, but only directly apply to certain people.
Keep reading Show less

Why San Francisco felt like the set of a sci-fi flick

But most city dwellers weren't seeing the science — they were seeing something out of Blade Runner.

Brittany Hosea-Small / AFP / Getty Images
Surprising Science

On Sept. 9, many West Coast residents looked out their windows and witnessed a post-apocalyptic landscape: silhouetted cars, buildings and people bathed in an overpowering orange light that looked like a jacked-up sunset.

Keep reading Show less
Strange Maps

Finland is the 'most sustainable' country, say expats

India finishes last of 60 countries in environment and sustainability, as ranked by the expats who work there.

Scroll down to load more…
Quantcast