Our moon may someday become a small planet, say researchers — a 'ploonet'

She may not be ours forever.

  • A new study suggests that the moons of gas-giant exoplanets may break away into their own orbits, called "ploonets."
  • Planet + moon = ploonet.
  • As the gas giants move inward toward their suns, the orbits of their moons are often disrupted, according to new computer models.

While exoplanets appear to be plentiful outside our solar system, the moons that we might expect to be orbiting them are another story. Indeed, last spring it looked like astronomers had finally found one — it was dubbed Neptmoon because of its great size — but that finding now appears less certain.

In light of this quandary, a new paper, published on June 27, looks at what might be happening to "exomoons" that orbit large gas-giant planets migrating inward toward their stars, such as our own Jupiter seems to have done.

The researchers — astrophysicist Mario Sucerquia and colleagues — hypothesize that these satellites break free of their tidal connection to their "parent" planets as they move nearer to their sun. The paper suggests that, at this point, they're not quite moons anymore — or planets — but "ploonets."

What's more, our own moon, the researchers say, may meet a similar fate one day, even though Earth isn't a gas giant. Warns Sucerquia:

"Earth's tidal strength is gradually pushing the moon away from us at a rate of about 3 centimeters a year. Therefore, the moon is indeed a potential ploonet once it reaches an unstable orbit."

Image source: JPL/BigThink

The research in the new paper is grounded on the manner in which large gas giants have been observed to slowly move inward through their solar systems toward their respective suns. It suggests that, as such a body draws close to the star, its moon's orbit — affected at that juncture by both the gravitational pull of the planet and the host star — experiences an increase in energy, which becomes unstable. This, eventually, releases the moon from the gravitational bonds of its parent parent.

Further, the paper's conclusions are based on a series of computer simulations that researchers conducted regarding what would happen to a moon orbiting a migrating gas giant. What was discovered?

The models found that 44 percent of the moons would meet their demise by being pulled into their planets (this could explain some of the planetary rings that have been observed). The system's star would seize and destroy another 6 percent. Significant amount of exomoons, however, — about 48 percent of them — would split off from their planets and begin orbiting their star as "ploonets." Around 2 percent would be blown out of their solar system altogether.

This would certainly explain why we haven't definitively found any evidence of exomoons yet.

Befriend your ideological opposite. It’s fun.

Step inside the unlikely friendship of a former ACLU president and an ultra-conservative Supreme Court Justice.

Sponsored by Charles Koch Foundation
  • Former president of the ACLU Nadine Strossen and Supreme Court Justice Antonin Scalia were unlikely friends. They debated each other at events all over the world, and because of that developed a deep and rewarding friendship – despite their immense differences.
  • Scalia, a famous conservative, was invited to circles that were not his "home territory", such as the ACLU, to debate his views. Here, Strossen expresses her gratitude and respect for his commitment to the exchange of ideas.
  • "It's really sad that people seem to think that if you disagree with somebody on some issues you can't be mutually respectful, you can't enjoy each other's company, you can't learn from each other and grow in yourself," says Strossen.
  • The opinions expressed in this video do not necessarily reflect the views of the Charles Koch Foundation, which encourages the expression of diverse viewpoints within a culture of civil discourse and mutual respect.
Keep reading Show less

3 ways to find a meaningful job, or find purpose in the job you already have

Learn how to redesign your job for maximum reward.

Videos
  • Broaching the question "What is my purpose?" is daunting – it's a grandiose idea, but research can make it a little more approachable if work is where you find your meaning. It turns out you can redesign your job to have maximum purpose.
  • There are 3 ways people find meaning at work, what Aaron Hurst calls the three elevations of impact. About a third of the population finds meaning at an individual level, from seeing the direct impact of their work on other people. Another third of people find their purpose at an organizational level. And the last third of people find meaning at a social level.
  • "What's interesting about these three elevations of impact is they enable us to find meaning in any job if we approach it the right way. And it shows how accessible purpose can be when we take responsibility for it in our work," says Hurst.
Keep reading Show less

Physicist advances a radical theory of gravity

Erik Verlinde has been compared to Einstein for completely rethinking the nature of gravity.

Photo by Willeke Duijvekam
Surprising Science
  • The Dutch physicist Erik Verlinde's hypothesis describes gravity as an "emergent" force not fundamental.
  • The scientist thinks his ideas describe the universe better than existing models, without resorting to "dark matter".
  • While some question his previous papers, Verlinde is reworking his ideas as a full-fledged theory.
Keep reading Show less

UPS has been discreetly using self-driving trucks to deliver cargo

TuSimple, an autonomous trucking company, has also engaged in test programs with the United States Postal Service and Amazon.


PAUL RATJE / Contributor
Technology & Innovation
  • This week, UPS announced that it's working with autonomous trucking startup TuSimple on a pilot project to deliver cargo in Arizona using self-driving trucks.
  • UPS has also acquired a minority stake in TuSimple.
  • TuSimple hopes its trucks will be fully autonomous — without a human driver — by late 2020, though regulatory questions remain.
Keep reading Show less