David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Chris Hadfield
Retired Canadian Astronaut & Author
from the world's big
Start Learning

Physicists invent a new way to search for dark matter using lasers

Japanese physicists devise technology to discover axion dark matter.

KAGRA observatory | CERN laser experiment.

Credit: University of Tokyo Institute for Cosmic Ray Research / CERN
  • Physicists from the University of Tokyo plan to use lasers to discover axions.
  • Axions are theoretical particles that may be components of dark matter.
  • Dark matter is a mysterious substance that may compose up to 27% of the universe.

Japanese physicists propose modifications to existing equipment that could allow them to pinpoint axions, hypothetical particles that may be components of dark matter. Dark matter, a mysterious theoretical substance that is thought to make up about 27% of all matter in the universe, is yet to be directly observed.

The scientists hope to track down the elusive axions using experiments with lasers.

The difficulty in finding dark matter is that it is made of, as many physicists think, weakly interacting massive particles or WIMPs, produced in the early Universe. While we haven't figured out how to spot these particles directly, interacting with regular matter, but we've been able to predict their existence by the gravitational effects they have throughout the universe.

The celebrated Large Hadron Collider in Switzerland has been used to search for WIMPs, and now a new approach from Japan hopes to use the KAGRA Observatory to discover dark matter by tracking down axions.

KAGRA stands for the Kamioka Gravitational Wave Detector. This first major gravitational wave observatory in Asia is located deep under a mountain of the Kamioka mine in Japan's Gifu Prefecture.

The Assistant Professor Yuta Michimura from the Department of Physics at the University of Tokyo, which runs the KAGRA project, explained that because axions are light and don't interact with normal matter, they are good candidates for dark matter.

Interestingly, he also quantified how much dark matter is there, saying the amount of it inside our planet would weigh as much as a squirrel

"We don't know the mass of axions, but we usually think it has a mass less than that of electrons, " said Michimura. "Our universe is filled with dark matter and it's estimated there are 500 grams of dark matter within the Earth, about the mass of a squirrel."

The proposed instrument that would hunt for axion dark matter.

Credit: 2019 Nagano et al | University of Tokyo Institute for Cosmic Ray Research

As you can imagine, spotting such particles is no easy task. Physicists have to figure out ways that can make the particles reveal themselves through their signatures.

Koji Nagano, a graduate student at the Institute for Cosmic Ray Research at the University of Tokyo, says that their models show that axions affect light polarization, which describes the geometrical orientation of oscillating electromagnetic waves.

Their method of finding axions relies on this finding.

"This polarization modulation can be enhanced if the light is reflected back and forth many times in an optical cavity composed of two parallel mirrors apart from each other, " further expounds their approach Nagano.

The best examples of such cavities, says the researcher, are the long tunnels of gravitational-wave observatories.

"There is overwhelming astrophysical and cosmological evidence that dark matter exists, but the question "What is dark matter?" is one of the biggest outstanding problems in modern physics," said Nagano. "If we can detect axions and say for sure they are dark matter, it would be a truly exciting event indeed. It's what physicists like us dream for."

The team proposes plans to inexpensively modify existing observatories like KAGRA or the Laser Interferometer Gravitational-Wave Observatory (LIGO) in the U.S. to search for the axions. The plan, according to Michimura, would be to add "polarization optics in front of photodiode sensors in gravitational-wave detectors."

The idea's additional benefit is that it doesn't require building entirely new facilities. Upgrading gravitational wave labs would not hamper their original missions — looking for gravitational waves. But the new functionality would open a new chapter in the search for dark matter.

The study involved Koji Nagano, Tomohiro Fujita, Yuta Michimura, and Ippei Obata.

Check out the their paper "Axion Dark Matter Search with Interferometric Gravitational Wave Detectors" in the journal Physical Review Letters.

Live tomorrow! Unfiltered lessons of a female entrepreneur

Join Pulitzer Prize-winning reporter and best-selling author Charles Duhigg as he interviews Victoria Montgomery Brown, co-founder and CEO of Big Think, live at 1pm EDT tomorrow.

Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Surprising Science

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.

Keep reading Show less

Improving Olympic performance with asthma drugs?

A study looks at the performance benefits delivered by asthma drugs when they're taken by athletes who don't have asthma.

Image source: sumroeng chinnapan/Shutterstock
Culture & Religion
  • One on hand, the most common health condition among Olympic athletes is asthma. On the other, asthmatic athletes regularly outperform their non-asthmatic counterparts.
  • A new study assesses the performance-enhancement effects of asthma medication for non-asthmatics.
  • The analysis looks at the effects of both allowed and banned asthma medications.

Keep reading Show less

Weird science shows unseemly way beetles escape after being eaten

Certain water beetles can escape from frogs after being consumed.

R. attenuata escaping from a black-spotted pond frog.

Surprising Science
  • A Japanese scientist shows that some beetles can wiggle out of frog's butts after being eaten whole.
  • The research suggests the beetle can get out in as little as 7 minutes.
  • Most of the beetles swallowed in the experiment survived with no complications after being excreted.
Keep reading Show less
Mind & Brain

Why are we fascinated by true crime stories?

Several experts have weighed in on our sometimes morbid curiosity and fascination with true crime.

Scroll down to load more…