Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Scientists create precursor to life in thermal vent experiment

Scientists speculate that if life were to have spontaneously developed on Earth, the first thing there would need to be are vesicles.

Hydrothermal vent
  • The findings also suggest that life may have formed in the deep oceans of other celestial bodies in our solar system as well.
  • These are a lot like cell membranes, only they don't contain any of the complicated machinery that real, living cells do.
    • Researchers recently demonstrated that these vesicles form frequently in environments similar to the hydrothermal vents of early Earth.


    One of the hallmarks of life is homeostasis, or the ability for life to maintain a consistent internal state regardless of external conditions. Think of how you sweat to cool down, or how you need to drink water every now and again to maintain fluid levels.

    This need to maintain homeostasis is present in all forms of life by definition. But in order for there to be homeostasis, there needs to be an inside and an outside. Now, a new study published in Nature Ecology & Evolution on November 4, may have identified how life first developed the barriers between cells' insides and their outsides.

    What are vesicles?

    Vesicles

    Examples of a lipid bilayer, a liposome (a.k.a., a vesicle, or a protocell), and a micelle, which is a type of structure composed of only one layer of lipids.

    Image source: Wikimedia Commons

    Biologists believe that before life could develop on Earth, the first thing that needed to occur was the development of protocells. You can think of this like a cell minus all of the machinery that makes a cell work. Instead, a protocell is just composed of a membrane that defines inside and outside.

    Nearly every organism's cell membrane is composed of a lipid bilayer, meaning that it's likely that life started out with these bilayers. A lipid is what's known as an amphiphilic molecules, which are molecules that have one side attracted to water and one side repelled by it. When there are two "sheets" of these molecules, they can form a barrier where the water-loving heads of the molecules face outward while the water-hating tails face inward. Sometimes, these sheets also form a sphere, or vesicle. These vesicles are essentially cell membranes.

    Many scientists believe that the formation of vesicles was the first step toward life. Vesicles keep certain material out of the protocell while protecting an internal solution — homeostasis. But the question of where and how they formed is less clear.

    Could vesicles have formed around hydrothermal vents?

    An artists depiction of the water vapor plumes found on Enceladus, which are believed to caused by subsurface hydrothermal vents.

    Image source: NASA / JPL-Caltech

    The earliest direct evidence of life dates back to 3.5 billion years ago in the form of fossilized microorganisms, but life clearly existed before then. A 2017 study claims to have identified fossilized microorganisms dating back to 4.28 billion years ago, a mere 400 million years after the formation of the Earth itself. But this finding is contested, not just because it implies life sprang into action as soon as it could but because of where it was found: in the precipitate of hydrothermal vents.

    The interesting chemistry and energy source that characterized hydrothermal vents has long made them a candidate for the origin of life, but experiments have failed to demonstrate that vesicles can form there. The environment around hydrothermal vents in the Hadean/early Archaean period when life began was highly alkaline, or basic, and extremely salty, even saltier than today's oceans are. When scientists attempted to create vesicles under such conditions, they simply fell apart, leading some scientists to argue that life probably began in freshwater pools, away from the highly alkaline and salty environment of hydrothermal vents.

    However, this new study indicates that not only can protocells develop in this environment, it actually encourages their development. One of the study's authors, Dr. Sean Jordan, explains why their results were different: "Other experiments had all used a small number of molecule types, mostly with fatty acids of the same size, whereas in natural environments, you would expect to see a wider array of molecules."

    Then and now.

    Prior experiments were extremely precise, failing to replicate that messier nature of the hydrothermal vent environment — Jordan's experiment, however, featured numerous amphiphilic molecules. In fact, molecules with longer carbon chains required the heat of a hydrothermal vent to form vesicles, the alkalinity helped the vesicles keep their electrical charge, and the salt in the solution ensured helped the molecules pack together more tightly.

    Not only does this suggest that life on Earth may have started in the deep oceans by hydrothermal vents, it also points to places in our solar system where life may develop or have developed as well. Celestial objects such as Europa, one of Jupiter's moons, may harbor life despite the miles-deep shell of ice that encases it. The moon's orbit constantly squeezes and unsqueezes it, providing heat for a liquid subsurface ocean that observations suggest may be salty and alkaline as well. Saturn's moon Enceladus is covered in geysers shooting water vapor, thought to be caused by hydrothermal vents, that contain salts and organic compounds.

    Together, these facts paint a picture about the formation of life; not only might life first develop deep in the ocean near hydrothermal vents, but it might develop as soon as its able, and often. If this finding is backed up by further evidence, and if we find that life began nearly as soon as the oceans formed on Earth, we may have a very good shot at finding life in our solar system on the moons of Jupiter and Saturn.


    Radical innovation: Unlocking the future of human invention

    Ready to see the future? Nanotronics CEO Matthew Putman talks innovation and the solutions that are right under our noses.

    Big Think LIVE

    Innovation in manufacturing has crawled since the 1950s. That's about to speed up.

    Keep reading Show less

    Your body’s full of stuff you no longer need. Here's a list.

    Evolution doesn't clean up after itself very well.

    Image source: Ernst Haeckel
    Surprising Science
    • An evolutionary biologist got people swapping ideas about our lingering vestigia.
    • Basically, this is the stuff that served some evolutionary purpose at some point, but now is kind of, well, extra.
    • Here are the six traits that inaugurated the fun.
    Keep reading Show less

    Quantum particles timed as they tunnel through a solid

    A clever new study definitively measures how long it takes for quantum particles to pass through a barrier.

    Image source: carlos castilla/Shutterstock
    • Quantum particles can tunnel through seemingly impassable barriers, popping up on the other side.
    • Quantum tunneling is not a new discovery, but there's a lot that's unknown about it.
    • By super-cooling rubidium particles, researchers use their spinning as a magnetic timer.

    When it comes to weird behavior, there's nothing quite like the quantum world. On top of that world-class head scratcher entanglement, there's also quantum tunneling — the mysterious process in which particles somehow find their way through what should be impenetrable barriers.

    Exactly why or even how quantum tunneling happens is unknown: Do particles just pop over to the other side instantaneously in the same way entangled particles interact? Or do they progressively tunnel through? Previous research has been conflicting.

    That quantum tunneling occurs has not been a matter of debate since it was discovered in the 1920s. When IBM famously wrote their name on a nickel substrate using 35 xenon atoms, they used a scanning tunneling microscope to see what they were doing. And tunnel diodes are fast-switching semiconductors that derive their negative resistance from quantum tunneling.

    Nonetheless, "Quantum tunneling is one of the most puzzling of quantum phenomena," says Aephraim Steinberg of the Quantum Information Science Program at Canadian Institute for Advanced Research in Toronto to Live Science. Speaking with Scientific American he explains, "It's as though the particle dug a tunnel under the hill and appeared on the other."

    Steinberg is a co-author of a study just published in the journal Nature that presents a series of clever experiments that allowed researchers to measure the amount of time it takes tunneling particles to find their way through a barrier. "And it is fantastic that we're now able to actually study it in this way."

    Frozen rubidium atoms

    Image source: Viktoriia Debopre/Shutterstock/Big Think

    One of the difficulties in ascertaining the time it takes for tunneling to occur is knowing precisely when it's begun and when it's finished. The authors of the new study solved this by devising a system based on particles' precession.

    Subatomic particles all have magnetic qualities, and they spin, or "precess," like a top when they encounter an external magnetic field. With this in mind, the authors of the study decided to construct a barrier with a magnetic field, causing any particles passing through it to precess as they did so. They wouldn't precess before entering the field or after, so by observing and timing the duration of the particles' precession, the researchers could definitively identify the length of time it took them to tunnel through the barrier.

    To construct their barrier, the scientists cooled about 8,000 rubidium atoms to a billionth of a degree above absolute zero. In this state, they form a Bose-Einstein condensate, AKA the fifth-known form of matter. When in this state, atoms slow down and can be clumped together rather than flying around independently at high speeds. (We've written before about a Bose-Einstein experiment in space.)

    Using a laser, the researchers pusehd about 2,000 rubidium atoms together in a barrier about 1.3 micrometers thick, endowing it with a pseudo-magnetic field. Compared to a single rubidium atom, this is a very thick wall, comparable to a half a mile deep if you yourself were a foot thick.

    With the wall prepared, a second laser nudged individual rubidium atoms toward it. Most of the atoms simply bounced off the barrier, but about 3% of them went right through as hoped. Precise measurement of their precession produced the result: It took them 0.61 milliseconds to get through.

    Reactions to the study

    Scientists not involved in the research find its results compelling.

    "This is a beautiful experiment," according to Igor Litvinyuk of Griffith University in Australia. "Just to do it is a heroic effort." Drew Alton of Augustana University, in South Dakota tells Live Science, "The experiment is a breathtaking technical achievement."

    What makes the researchers' results so exceptional is their unambiguity. Says Chad Orzel at Union College in New York, "Their experiment is ingeniously constructed to make it difficult to interpret as anything other than what they say." He calls the research, "one of the best examples you'll see of a thought experiment made real." Litvinyuk agrees: "I see no holes in this."

    As for the researchers themselves, enhancements to their experimental apparatus are underway to help them learn more. "We're working on a new measurement where we make the barrier thicker," Steinberg said. In addition, there's also the interesting question of whether or not that 0.61-millisecond trip occurs at a steady rate: "It will be very interesting to see if the atoms' speed is constant or not."

    Self-driving cars to race for $1.5 million at Indianapolis Motor Speedway ​

    So far, 30 student teams have entered the Indy Autonomous Challenge, scheduled for October 2021.

    Illustration of cockpit of a self-driving car

    Indy Autonomous Challenge
    Technology & Innovation
    • The Indy Autonomous Challenge will task student teams with developing self-driving software for race cars.
    • The competition requires cars to complete 20 laps within 25 minutes, meaning cars would need to average about 110 mph.
    • The organizers say they hope to advance the field of driverless cars and "inspire the next generation of STEM talent."
    Keep reading Show less
    Mind & Brain

    The dangers of the chemical imbalance theory of depression

    A new Harvard study finds that the language you use affects patient outcome.

    Scroll down to load more…
    Quantcast