Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

The ocean is teeming with viruses — billions and billions of them

A new study has identified 12 times as many viral populations as previous research.

Shutterstock
  • New research suggests that there are nearly 200,000 different viral populations in the ocean.
  • Surprisingly, the Arctic appears to be a viral hotspot.
  • Viruses play an important role in the ocean's food chain and carbon cycle, making research such as this potentially valuable to future climate change work.

Bad news for thalassophobes; there's more than just sharks and giant squids lurking beneath the ocean's surface. New research published in Cell found that there are nearly 200,000 different viral populations swimming about the seas, and they tend to gather in some unexpected places, too.

What is a viral population?

Generally, scientists don't classify viruses into species since they evolve so quickly and because viruses aren't truly "alive," at least not in the biological sense. Instead, viruses are more readily classified into populations, or groups of discrete genetic lineages. So, 200,000 viral populations doesn't refer to 200,000 individual viruses; there's far more than that in the oceans. Even just a liter of seawater contains an estimated 100 billion individual viruses.

Not much work had been done on estimating the number of viral populations out there, especially not in the ocean. Using data collected by the Tara Oceans research vessel, this new study identified 12 times as many viral populations as previous research. To do so, the research team analyzed over 180 samples across the globe between 2009 and 2013.

What did they find?

This research identified some interesting features of the global distribution of viral populations in the ocean. First, they found five ecological zones across the planet's oceans where different populations of viruses tend to cluster: the Arctic; the Antarctic; and the temperate and tropical epipelagic, the mesopelagic, and the bathypelagic. These last three zones correspond to depths of 0–150 meters, 150–1,000 meters, and deeper than 2,000 meters, respectively. Furthermore, the researchers discovered that different populations of viruses grouped together depending upon a zone's temperature, the reason being that their hosts — microbial life — thrived at different temperatures.

The temperate and tropical epipelagic zone was shown to be something of a viral hotspot. This area had significantly more diversity in its viral populations than other areas. Surprisingly, the Arctic also had highly diverse viral populations. This is in contrast to the pattern found for larger organisms; diversity tends to be highest at the equator and then diminish as you move closer to the poles.

These two zones, too, seemed to have exclusive populations of viruses — that is, the virus populations found in these hotspots didn't appear elsewhere. In contrast, the Antarctic and bathypelagic zones contained viruses that were often found in other zones, suggesting that more viruses were migrating to these areas from elsewhere than were reproducing in these zones.

The importance of the study

In many ways, viruses shape the entire food chain. The vast majority of life in the oceans consists of microbial life, which in turn act as nutrient sources for many plants and animals in the oceans. Viruses primarily prey upon these microbes and shape their populations, making it critical to understand how many viral groups there are, how diverse they are, and where we can find them.

But this research could be turned to an even more practical use. In an interview with CNN, microbiologist and study author Matthew Sullivan claims that this knowledge "helps us do a lot of the things we'd be interested in to better understand the ocean and, I hate to say it, but maybe to have to engineer the ocean at some point to combat climate change."

Sullivan suggested that by manipulating viral genomes, we could encourage viruses to suck up carbon dioxide in the air for sequestration deep beneath the ocean's surface. But before this and related work can be done, scientists need to have a solid understanding of the diversity and distribution of our ocean's viruses.

Remote learning vs. online instruction: How COVID-19 woke America up to the difference

Educators and administrators must build new supports for faculty and student success in a world where the classroom might become virtual in the blink of an eye.

Credit: Shutterstock
Sponsored by Charles Koch Foundation
  • If you or someone you know is attending school remotely, you are more than likely learning through emergency remote instruction, which is not the same as online learning, write Rich DeMillo and Steve Harmon.
  • Education institutions must properly define and understand the difference between a course that is designed from inception to be taught in an online format and a course that has been rapidly converted to be offered to remote students.
  • In a future involving more online instruction than any of us ever imagined, it will be crucial to meticulously design factors like learner navigation, interactive recordings, feedback loops, exams and office hours in order to maximize learning potential within the virtual environment.
Keep reading Show less

Octopus-like creatures inhabit Jupiter’s moon, claims space scientist

A leading British space scientist thinks there is life under the ice sheets of Europa.

Jupiter's moon Europa has a huge ocean beneath its sheets of ice.

Credit: NASA/JPL-Caltech/SETI Institute
Surprising Science
  • A British scientist named Professor Monica Grady recently came out in support of extraterrestrial life on Europa.
  • Europa, the sixth largest moon in the solar system, may have favorable conditions for life under its miles of ice.
  • The moon is one of Jupiter's 79.
Keep reading Show less

White dwarfs hold key to life in the universe, suggests study

New study shows white dwarf stars create an essential component of life.

White dwarfs.

NASA and H. Richer (University of British Columbia)
Surprising Science
  • White dwarf stars create carbon atoms in the Milky Way galaxy, shows new study.
  • Carbon is an essential component of life.
  • White dwarfs make carbon in their hot insides before the stars die.
Keep reading Show less

"Forced empathy" is a powerful negotiation tool. Here's how to do it.

Master negotiator Chris Voss breaks down how to get what you want during negotiations.

Juan Carlos Correa (L) , a prospective home buyer is shown a short sale home by Denise Madan, a Real Estate agent with Re/Max, as he shops for a house on April 22, 2014 in Coral Gables, Florida.

Photo by Joe Raedle/Getty Images
Personal Growth
  • Former FBI negotiator Chris Voss explains how forced empathy is a powerful negotiating tactic.
  • The key is starting a sentence with "What" or "How," causing the other person to look at the situation through your eyes.
  • What appears to signal weakness is turned into a strength when using this tactic.
Keep reading Show less
Scroll down to load more…
Quantcast