Astrophysicists discover why black holes and neutron stars shine bright

Researchers find what causes the glow coming from the densest objects in our universe.

Astrophysicists discover why black holes and neutron stars shine bright

Crab Nebula.

Credit: NASA, ESA, J. Hester (Arizona State University)
  • Columbia University astrophysicists discovered the cause of the unusual glow coming from regions of space with black holes and neutron stars.
  • The researchers ran some of the largest computer simulations ever to reach their conclusions.
  • They found that turbulence and reconnection of super-strong magnetic fields are responsible for the light.


Demonstrating again that space is a limitless reservoir of scientific wonders, a new study discovered why areas hosting black holes and neutron stars emit strange bright glows. Astrophysicists found that turbulence and reconnection of super-strong magnetic fields are behind the cosmic mystery.

The cause of the phenomenon, which illuminates these super-dense parts of space, has been attributed previously to high-energy electromagnetic radiation. Scientists speculated that it's created by electrons moving at just about the speed of light. The new study from researchers at Columbia University explained why these particles accelerate.

Astrophysicists Luca Comisso and Lorenzo Sironi carried out the research by running some of the largest super-computer simulations ever conducted in this area. They managed to calculate the trajectories of hundreds of billions of charged particles.

Comiso, a postdoctoral research scientist at Columbia, explained their conclusion:

"Turbulence and magnetic reconnection—a process in which magnetic field lines tear and rapidly reconnect—conspire together to accelerate particles, boosting them to velocities that approach the speed of light," said Comisso in a press release.

As Comiso further described, the space region that is home to black holes and neutron stars is also full of a super-hot gas of charged particles. Their chaotic motion affects magnetic field lines and results in "vigorous magnetic reconnection". This, in turn, creates an electric field which accelerates particles to energies that are "much higher than in the most powerful accelerators on Earth, like the Large Hadron Collider at CERN," added Comisso.

Amazing astronomy: How neutron stars create ripples in space-time

Interestingly, the simulations showed that the particles gathered most of their energy through the process of random bouncing at super-high speeds.

"This is indeed the radiation emitted around black holes and neutron stars that make them shine, a phenomenon we can observe on Earth," said Sironi, the study's principal investigator and an assistant professor of astronomy at Columbia.

Next, the scientists plan to confirm their findings by comparing them to the electromagnetic spectrum from the Crab Nebula, a bright remnant of a supernova.

You can check out the study published in the December issue of The Astrophysical Journal.

A massive super-computer simulation demonstrates the strong particle density fluctuations that happen in the extreme turbulent environments home to black holes and neutron stars. The dark blue regions are low particle density regions, and the yellow regions are over-dense regions. Particles are accelerated to extremely high speeds from interacting with turbulence fluctuations.

Credit: Luca Comisso and Lorenzo Sironi

COVID-19 amplified America’s devastating health gap. Can we bridge it?

The COVID-19 pandemic is making health disparities in the United States crystal clear. It is a clarion call for health care systems to double their efforts in vulnerable communities.

Willie Mae Daniels makes melted cheese sandwiches with her granddaughter, Karyah Davis, 6, after being laid off from her job as a food service cashier at the University of Miami on March 17, 2020.

Credit: Joe Raedle/Getty Images
Sponsored by Northwell Health
  • The COVID-19 pandemic has exacerbated America's health disparities, widening the divide between the haves and have nots.
  • Studies show disparities in wealth, race, and online access have disproportionately harmed underserved U.S. communities during the pandemic.
  • To begin curing this social aliment, health systems like Northwell Health are establishing relationships of trust in these communities so that the post-COVID world looks different than the pre-COVID one.
Keep reading Show less

Who is the highest selling artist from your state?

What’s Eminem doing in Missouri? Kanye West in Georgia? And Wiz Khalifa in, of all places, North Dakota?

Eminem may be 'from' Detroit, but he was born in Missouri
Culture & Religion

This is a mysterious map. Obviously about music, or more precisely musicians. But what’s Eminem doing in Missouri? Kanye West in Georgia? And Wiz Khalifa in, of all places, North Dakota? None of these musicians are from those states! Everyone knows that! Is this map that stupid, or just looking for a fight? Let’s pause a moment and consider our attention spans, shrinking faster than polar ice caps.

Keep reading Show less

MIT breakthrough in deep learning could help reduce errors

Researchers make the case for "deep evidential regression."

Credit: sdeocoret / Adobe Stock
Technology & Innovation
  • MIT researchers claim that deep learning neural networks need better uncertainty analysis to reduce errors.
  • "Deep evidential regression" reduces uncertainty after only one pass on a network, greatly reducing time and memory.
  • This could help mitigate problems in medical diagnoses, autonomous driving, and much more.
Keep reading Show less

Skyborne whales: The rise (and fall) of the airship

Can passenger airships make a triumphantly 'green' comeback?

R. Humphrey/Topical Press Agency/Getty Images
Technology & Innovation

Large airships were too sensitive to wind gusts and too sluggish to win against aeroplanes. But today, they have a chance to make a spectacular return.

Keep reading Show less
Surprising Science

Vegans are more likely to suffer broken bones, study finds

Vegans and vegetarians often have nutrient deficiencies and lower BMI, which can increase the risk of fractures.

Scroll down to load more…
Quantcast