Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

The moon is shrinking — also, moonquakes are a thing

A new NASA report shakes up lunar geology.

  • The moon is indeed shrinking. It has been since it formed.
  • The shrinking is producing thousands of fault lines.
  • Archived seismometer data from Apollo missions show moonquakes.

If you're looking up at a bright full moon and notice it's getting smaller, you're so slightly right that you're closer to being wrong. The moon is shrinking, but only very slowly, and it always has been since its formation, from which it's still cooling down. You've never seen it when it wasn't shrinking.

NASA has just announced, though, that this gradual reduction in size is producing moonquakes. The seemingly lifeless satellite is actually pretty dynamic from a geological point of view, a surprise to the scientific community. Blame shrinkage. Also the pull of earth's gravity.

The research was published May 13 in Nature Geoscience.

In the beginning, revised

Image source: SueC/Shutterstock

We don't really know how the moon formed, but there are suspicions, and the leading theory is that a Mars-sized object slammed into the Earth about 4.5 billion years ago. The object itself, as well as debris from Earth, was ejected into Earth orbit as a molten satellite that's been slowly cooling ever since.

It took about 100 million years for it to crystallize into rocks, with the least dense of them floating upward in the slurry to form the moon's crust and surface. As of this writing, NASA's About the moon webpage says that, "Since the ancient time of volcanism, the arid, lifeless Moon has remained nearly unchanged." They'll likely update that soon — we know now that's it's not true.

Spotted from orbit

Signs of movement: Arrows show boulder fields, patches of relatively high bright soil or regolith.

Image source: NASA/GSFC/Arizona State University/Smithsonian

Orbiting the moon as you read this is NASA's Lunar Reconnaissance Orbiter (LRO), which was launched in June 2009 and has been taking pictures of the Moon's surface since it arrived in lunar orbit a year and four days later.

Captured by its high-resolution 0.5–2m per pixel cameras were a "vast network" of scarps that indicated a variety of interactions between thrust faults. In addition, the faults' crisp appearance, as well as other characteristics, suggest that they're pretty young in geological terms, less than 50 million years old. Though their existence was already known — Apollo 17's Astronauts Eugene Cernan and Harrison Schmitt had to zig-zag their rover up and over the cliff face of one — the sheer number of faults, in the thousands, and their complexity was only made clear by LRO.

NASA compares the faults to the wrinkles formed on a grape's skin as it shrinks into a raisin. The main difference is that where a raisin's skin is soft and pliable, the Moon's crust is brittle and thus fractures and cracks as the Moon continues to cool and shrink at a rate of about 150 feet every few hundred million years.

Digging through Apollo data

Buzz Aldrin deploys a seismometer during the Apollo 11 mission.

Image source: NASA

To gain a fuller understanding of their origin, a team of scientists led by Thomas Watters, senior scientist in the Center for Earth and Planetary Studies at the Smithsonian's National Air and Space Museum took a closer look at data from four seismometers left on the moon by the Apollo 12, 14, 15 and 16 missions at their landing sites. While the Apollo 11 device was active only for about three weeks, the others recorded 28 shallow moonquakes from 1969 to 1977, and there's no reason to think the quakes have stopped since then.

Watters' team developed an algorithm for identifying the quake epicenters from the seismometers' data, and found that at least eight of them were within 30 kilometers of a visible scarps, lending support to the idea that movement of those scarps created the moonquakes. "We think it's very likely that these eight quakes were produced by faults slipping as stress built up when the lunar crust was compressed by global contraction and tidal forces," Watters summarizes, "indicating that the Apollo seismometers recorded the shrinking moon and the moon is still tectonically active." These were not all subtle temblors, either. "Some of these quakes can be fairly strong, around five on the Richter scale."

The algorithm also revealed that six of the eight quakes occurred when the Earth's tidal pull on the Moon was at its maximum, when the moon was at its farthest point, or apogee, from Earth. It's likely that at these times the Moon's crust is under exceptional stress, and so it's more likely for fault slips to occur.

An interesting sidetone is that China's Chang'e-4 dark-side lunar mission may have just found bits of mantle rock on the moon's surface, perhaps a sign of continued geological movement of the Moon's crust and mantle.

Lee Lincoln Scarp at the Apollo 17 Landing Site

Old data, new insight

As LRO Project Scientist John Keller of NASA's Goddard Space Flight Center in Maryland points out, "It's really remarkable to see how data from nearly 50 years ago and from the LRO mission has been combined to advance our understanding of the moon, while suggesting where future missions intent on studying the Moon's interior processes should go."

Neom, Saudi Arabia's $500 billion megacity, reaches its next phase

Construction of the $500 billion dollar tech city-state of the future is moving ahead.

Credit: Neom
Technology & Innovation
  • The futuristic megacity Neom is being built in Saudi Arabia.
  • The city will be fully automated, leading in health, education and quality of life.
  • It will feature an artificial moon, cloud seeding, robotic gladiators and flying taxis.
Keep reading Show less

Tuberculosis vaccine shows promise in reducing COVID deaths

A new study suggests that a century-old vaccine may reduce the severity of coronavirus cases.

Closeup of a BCG vaccination.

Credit: Kekyalyaynen.
Surprising Science
  • A new study finds a country's tuberculosis BCG vaccination is linked to its COVID-19 mortality rate.
  • More BCG vaccinations is connected to fewer severe coronavirus cases.
  • The study is preliminary and more research is needed to support the findings.
Keep reading Show less

Human brains remember certain words more easily than others

A study of the manner in which memory works turns up a surprising thing.

Image Point Fr / Shutterstock
Mind & Brain
  • Researchers have found that some basic words appear to be more memorable than others.
  • Some faces are also easier to commit to memory.
  • Scientists suggest that these words serve as semantic bridges when the brain is searching for a memory.

Cognitive psychologist Weizhen Xie (Zane) of the NIH's National Institute of Neurological Disorders and Stroke (NINDS) works with people who have intractable epilepsy, a form of the disorder that can't be controlled with medications. During research into the brain activity of patients, he and his colleagues discovered something odd about human memory: It appears that certain basic words are consistently more memorable than other basic words.

The research is published in Nature Human Behaviour.

An odd find

Image source: Tsekhmister/Shutterstock

Xie's team was re-analyzing memory tests of 30 epilepsy patients undertaken by Kareem Zaghloul of NINDS.

"Our goal is to find and eliminate the source of these harmful and debilitating seizures," Zaghloul said. "The monitoring period also provides a rare opportunity to record the neural activity that controls other parts of our lives. With the help of these patient volunteers we have been able to uncover some of the blueprints behind our memories."

Specifically, the participants were shown word pairs, such as "hand" and "apple." To better understand how the brain might remember such pairings, after a brief interval, participants were supplied one of the two words and asked to recall the other. Of the 300 words used in the tests, five of them proved to be five times more likely to be recalled: pig, tank, doll, pond, and door.

The scientists were perplexed that these words were so much more memorable than words like "cat," "street," "stair," "couch," and "cloud."

Intrigued, the researchers looked at a second data source from a word test taken by 2,623 healthy individuals via Amazon's Mechanical Turk and found essentially the same thing.

"We saw that some things — in this case, words — may be inherently easier for our brains to recall than others," Zaghloul said. That the Mechanical Turk results were so similar may "provide the strongest evidence to date that what we discovered about how the brain controls memory in this set of patients may also be true for people outside of the study."

Why understanding memory matters

person holding missing piece from human head puzzle

Image source: Orawan Pattarawimonchai/Shutterstock

"Our memories play a fundamental role in who we are and how our brains work," Xie said. "However, one of the biggest challenges of studying memory is that people often remember the same things in different ways, making it difficult for researchers to compare people's performances on memory tests." He added that the search for some kind of unified theory of memory has been going on for over a century.

If a comprehensive understanding of the way memory works can be developed, the researchers say that "we can predict what people should remember in advance and understand how our brains do this, then we might be able to develop better ways to evaluate someone's overall brain health."

Party chat

Image source: joob_in/Shutterstock

Xie's interest in this was piqued during a conversation with Wilma Bainbridge of University of Chicago at a Christmas party a couple of years ago. Bainbridge was, at the time, wrapping up a study of 1,000 volunteers that suggested certain faces are universally more memorable than others.

Bainbridge recalls, "Our exciting finding is that there are some images of people or places that are inherently memorable for all people, even though we have each seen different things in our lives. And if image memorability is so powerful, this means we can know in advance what people are likely to remember or forget."

spinning 3D model of a brain

Temporal lobes

Image source: Anatomography/Wikimedia

At first, the scientists suspected that the memorable words and faces were simply recalled more frequently and were thus easier to recall. They envisioned them as being akin to "highly trafficked spots connected to smaller spots representing the less memorable words." They developed a modeling program based on word frequencies found in books, new articles, and Wikipedia pages. Unfortunately, the model was unable to predict or duplicate the results they saw in their clinical experiments.

Eventually, the researchers came to suspect that the memorability of certain words was linked to the frequency with which the brain used them as semantic links between other memories, making them often-visited hubs in individuals's memory networks, and therefore places the brain jumped to early and often when retrieving memories. This idea was supported by observed activity in participants' anterior temporal lobe, a language center.

In epilepsy patients, these words were so frequently recalled that subjects often shouted them out even when they were incorrect responses to word-pair inquiries.

Seek, find

Modern search engines no longer simply look for raw words when resolving an inquiry: They also look for semantic — contextual and meaning — connections so that the results they present may better anticipate what it is you're looking for. Xie suggests something similar may be happening in the brain: "You know when you type words into a search engine, and it shows you a list of highly relevant guesses? It feels like the search engine is reading your mind. Well, our results suggest that the brains of the subjects in this study did something similar when they tried to recall a paired word, and we think that this may happen when we remember many of our past experiences."

He also notes that it may one day be possible to leverage individuals' apparently wired-in knowledge of their language as a fixed point against which to assess the health of their memory and brain.

Videos

Does conscious AI deserve rights?

If machines develop consciousness, or if we manage to give it to them, the human-robot dynamic will forever be different.

Scroll down to load more…
Quantcast