Scientists blow up their lab after creating strongest magnet ever

It's a record magnetic field, but... yeah. That didn't last long.

  • Scientists knew that it would probably explode, but they did not expect to reach such a record magnetic field.
  • Magnetic fields are measured in teslas, after Nikola Tesla.
  • This one reached a record 1,200 teslas, 400 times stronger than an MRI; watch it explode in the video


"With magnetic fields above 1,000 teslas, you open up some interesting possibilities," lead researcher Takeyama explained. "You can observe the motion of electrons outside the material environments they are normally within. So we can study them in a whole new light and explore new kinds of electronic devices. This research could also be useful to those working on fusion power generation."

The study, published in Review of Scientific Instruments, was released on September 17.

To achieve the record, the team used a technique known as electromagnetic flux-compression (EMFC). The instrument, which generates a low-strength magnetic field of 3.2 teslas, was attached to a row of capacitors that generate 3.2 megajoules, which is a huge amount of energy.

This compresses the magnetic field into a tiny area extremely quickly. But, as the team predicted, it can't be compressed for long, eventually creating a shock wave that rips the instrument apart. They expected this to happen after about 700 teslas, as that's what it was built to withstand. But incredibly, it reached 1,200 before exploding.

Photo: The University of Tokyo.

1,200 teslas later... a huge white light engulfs the lab. Video below!

Another view of the magnetic explosion

This image explains it a bit better, from the IEEE institute. "The University of Tokyo's 1,200-Tesla magnetic field generator is powered by a bank of capacitors [on left, white] capable of storing 5 megajoules. The capacitors' energy flows into the primary coil [bottom left, gray] and induces a counteracting current and magnetic field in the liner [orange]. This implodes the liner in 40 microseconds, compressing the magnetic field [bottom right]."

Image by University of Tokyo.

Graphic illustration of how the scientists hit the record.

Watch it go boom

​There are two kinds of failure – but only one is honorable

Malcolm Gladwell teaches "Get over yourself and get to work" for Big Think Edge.

Big Think Edge
  • Learn to recognize failure and know the big difference between panicking and choking.
  • At Big Think Edge, Malcolm Gladwell teaches how to check your inner critic and get clear on what failure is.
  • Subscribe to Big Think Edge before we launch on March 30 to get 20% off monthly and annual memberships.
Keep reading Show less

Why is 18 the age of adulthood if the brain can take 30 years to mature?

Neuroscience research suggests it might be time to rethink our ideas about when exactly a child becomes an adult.

Mind & Brain
  • Research suggests that most human brains take about 25 years to develop, though these rates can vary among men and women, and among individuals.
  • Although the human brain matures in size during adolescence, important developments within the prefrontal cortex and other regions still take pace well into one's 20s.
  • The findings raise complex ethical questions about the way our criminal justice systems punishes criminals in their late teens and early 20s.
Keep reading Show less

Believe in soulmates? You're more likely to 'ghost' romantic partners.

Does believing in true love make people act like jerks?

Thought Catalog via Unsplash
Sex & Relationships
  • Ghosting, or cutting off all contact suddenly with a romantic partner, is not nice.
  • Growth-oriented people (who think relationships are made, not born) do not appreciate it.
  • Destiny-oriented people (who believe in soulmates) are more likely to be okay with ghosting.
Keep reading Show less

Mini-brains attach to spinal cord and twitch muscles

A new method of growing mini-brains produces some startling results.

(Lancaster, et al)
Surprising Science
  • Researchers find a new and inexpensive way to keep organoids growing for a year.
  • Axons from the study's organoids attached themselves to embryonic mouse spinal cord cells.
  • The mini-brains took control of muscles connected to the spinal cords.
Keep reading Show less