David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Chris Hadfield
Retired Canadian Astronaut & Author
from the world's big
Start Learning

Researchers build living robots from frog cells

Scientists envision a new type of organism ready to assist humans.

Image source: Kriegman, Blackiston, Levin, and Bongard
  • Computers designed, and scientists have constructed, programmable living robots.
  • Study announces potentially self-healing, biodegradable, purpose-build automatons.
  • Two "xenobots" are already bumbling their way around dishes of water in a lab.

While we typically think of robots as being constructed from metal, circuitry, and plastic, a team of researchers from Tufts University in Medford, Massachusetts and the University of Vermont in Burlington, Vermont have just announced the creation of task-specific robots made of living cells scraped from frog embryos. (They are not called "ribits.") Biologist Michael Levin tells The Guardian, "They are living, programmable organisms."

Levin and his colleagues call the tiny automatons "xenobots," after Xenopus laevis, the African clawed frogs from whom their cells came. They're proofs of a larger concept the researchers have invented: a method, or "pipeline," theoretically capable of creating living bots for all sorts of tasks.

Aside from being a somewhat shocking development, the robots raise obvious ethical and practical issues. "These are entirely new lifeforms. They have never before existed on Earth," points out Levin. Team member Sam Kreigman says, "What's important to me is that this is public, so we can have a discussion as a society and policymakers can decide what is the best course of action."

How the xenobots are made and how they work

Image source: Kriegman, Blackiston, Levin, and Bongard

The primary purpose of the research is the development of a workable, scalable pipeline that produces robots selected, or "programmed," for specific capabilities. It works like this:

Computer algorithms set to work iterating 500 to 1,000 virtual 3D structures using models of actual cells — whose behaviors are known — as building blocks. For the xenobots, models of passive and contractive (heart muscle) skin cells from frog embryos were used. Upon identifying designs that function in a desired manner, the scientists then painstakingly construct a real-world version using the actual, living cells.

In the case of the xenobots, the contractive skin muscles contract and expand, like an engine. Through this action, a xenobot can move itself around on a pumping pair of stumpy legs. One xenobot has a hole in its middle that's been formed into a pouch allowing it, theoretically, to carry a tiny payload of some sort. The xenobots can survive for about 10 days.

The pipeline

Since the research is really about the pipeline, the xenobots are primarily intended as a demonstration of the system's potential. If you're wondering why we might want living robots, you're not alone. According to senior researcher roboticist Joshua Bongard, "It's impossible to know what the applications will be for any new technology, so we can really only guess."

Even so, the researchers propose a few possible applications, including eating up and digesting microplastics in the ocean, and doing the same for toxins in the human body, delivering drugs to patients, and cleaning plaque from human artery walls.

All of these assume that the system can mature into a means of creating robots capable of performing multiple interlinked tasks such as identifying and then digesting toxins. If this becomes doable, there are some obvious benefits inherent in living-cell robots: They can heal themselves if the become damaged—this has already been demonstrated with the xenobots—and they are made of eminently biodegradable materials.

Ethical and practical issues

Image source: Kriegman, Blackiston, Levin, and Bongard

Chief among the ethical concerns regarding living robots is the notion that, as living organisms, the robots may be reasonably entitled to moral status as individuals.

L. Syd M Johnson, bioethicist at SUNY Upstate Medical University tells Big Think: "As with any new technology, how it is used or will be used raises important ethical concerns. As humans, we've shown time and again that we are really not good at predicting the future consequences of technological innovations. But when novel living organisms are created, I have concerns about potential harms to those organisms themselves. Humans have been creating and manipulating animals for millennia with little concern for how it affects the animals themselves. Will these xenobots be more like bacteria, which are alive, but not sentient, so we need not worry about their welfare? Or will they be more like jellyfish or corals, animals about whom we might reasonably wonder what they feel? In principle, xenobots are arguably animals, and could be created using neural cells, and to have a nervous system that would make it easier to "program" them to respond to and navigate the world. Releasing them into the world, and creating them to be potentially capable of feeling are both possibilities that I find worrying."

On a practical level, it's worth noting that among the possible uses mentioned by the researchers is an illustration of the type of problem the robots couldn't really solve. If they ate microplastics from the sea and then died, what would happen to their plastic-filled corpses? Wouldn't they eventually be eaten by other ocean organisms, merely shifting the plastic to a different rung in the ecological ladder? (Removing toxins from a human body would be less of an issue—the robot could simply be eliminated through the patient's digestive system.)

Big picture

These concerns notwithstanding, the researchers remain excited by the possibilities, even beyond making living robots. "The aim is to understand the software of life," says Levin. "If you think about birth defects, cancer, age-related diseases, all of these things could be solved if we knew how to make biological structures, to have ultimate control over growth and form."

How accountability at work can transform your organization

If you don't practice accountability at work you're letting the formula for success slip right through your hands.

  • What is accountability? It's a tool for improving performance and, once its potential is thoroughly understood, it can be leveraged at scale in any team or organization.
  • In this lesson for leaders, managers, and individuals, Shideh Sedgh Bina, a founding partner of Insigniam and the editor-in-chief of IQ Insigniam Quarterly, explains why it is so crucial to success.
  • Learn to recognize the mindset of accountable versus unaccountable people, then use Shideh's guided exercise as a template for your next post-project accountability analysis—whether that project was a success or it fell short, it's equally important to do the reckoning.

What if Middle-earth was in Pakistan?

Iranian Tolkien scholar finds intriguing parallels between subcontinental geography and famous map of Middle-earth

Could this former river island in the Indus have inspired Tolkien to create Cair Andros, the ship-shaped island in the Anduin river?

Image: Mohammad Reza Kamali, reproduced with kind permission
Strange Maps
  • J.R.R. Tolkien himself hinted that his stories are set in a really ancient version of Europe.
  • But a fantasy realm can be inspired by a variety of places; and perhaps so is Tolkien's world.
  • These intriguing similarities with Asian topography show that it may be time to 'decolonise' Middle-earth.
Keep reading Show less

Giant whale sharks have teeth on their eyeballs

The ocean's largest shark relies on vision more than previously believed.

An eight-metre-long Whale shark swims with other fish at the Okinawa Churaumi Aquarium on February 26, 2010 in Motobu, Okinawa, Japan.

Photo by Koichi Kamoshida/Getty Images
Surprising Science
  • Japanese researchers discovered that the whale shark has "tiny teeth"—dermal denticles—protecting its eyes from abrasion.
  • They also found the shark is able to retract its eyeball into the eye socket.
  • Their research confirms that this giant fish relies on vision more than previously believed.
Keep reading Show less

A massive star has mysteriously vanished, confusing astronomers

A gigantic star makes off during an eight-year gap in observations.

Image source: ESO/L. Calçada
Surprising Science
  • The massive star in the Kinsman Dwarf Galaxy seems to have disappeared between 2011 and 2019.
  • It's likely that it erupted, but could it have collapsed into a black hole without a supernova?
  • Maybe it's still there, but much less luminous and/or covered by dust.

A "very massive star" in the Kinman Dwarf galaxy caught the attention of astronomers in the early years of the 2000s: It seemed to be reaching a late-ish chapter in its life story and offered a rare chance to observe the death of a large star in a region low in metallicity. However, by the time scientists had the chance to turn the European Southern Observatory's (ESO) Very Large Telescope (VLT) in Paranal, Chile back around to it in 2019 — it's not a slow-turner, just an in-demand device — it was utterly gone without a trace. But how?

The two leading theories about what happened are that either it's still there, still erupting its way through its death throes, with less luminosity and perhaps obscured by dust, or it just up and collapsed into a black hole without going through a supernova stage. "If true, this would be the first direct detection of such a monster star ending its life in this manner," says Andrew Allan of Trinity College Dublin, Ireland, leader of the observation team whose study is published in Monthly Notices of the Royal Astronomical Society.

So, em...

Between astronomers' last look in 2011 and 2019 is a large enough interval of time for something to happen. Not that 2001 (when it was first observed) or 2019 have much meaning, since we're always watching the past out there and the Kinman Dwarf Galaxy is 75 million light years away. We often think of cosmic events as slow-moving phenomena because so often their follow-on effects are massive and unfold to us over time. But things happen just as fast big as small. The number of things that happened in the first 10 millionth of a trillionth of a trillionth of a trillionth of a second after the Big Bang, for example, is insane.

In any event, the Kinsman Dwarf Galaxy, or PHL 293B, is far way, too far for astronomers to directly observe its stars. Their presence can be inferred from spectroscopic signatures — specifically, PHL 293B between 2001 and 2011 consistently featured strong signatures of hydrogen that indicated the presence of a massive "luminous blue variable" (LBV) star about 2.5 times more brilliant than our Sun. Astronomers suspect that some very large stars may spend their final years as LBVs.

Though LBVs are known to experience radical shifts in spectra and brightness, they reliably leave specific traces that help confirm their ongoing presence. In 2019 the hydrogen signatures, and such traces, were gone. Allan says, "It would be highly unusual for such a massive star to disappear without producing a bright supernova explosion."

The Kinsman Dwarf Galaxy, or PHL 293B, is one of the most metal-poor galaxies known. Explosive, massive, Wolf-Rayet stars are seldom seen in such environments — NASA refers to such stars as those that "live fast, die hard." Red supergiants are also rare to low Z environments. The now-missing star was looked to as a rare opportunity to observe a massive star's late stages in such an environment.

Celestial sleuthing

In August 2019, the team pointed the four eight-meter telescopes of ESO's ESPRESSO array simultaneously toward the LBV's former location: nothing. They also gave the VLT's X-shooter instrument a shot a few months later: also nothing.

Still pursuing the missing star, the scientists acquired access to older data for comparison to what they already felt they knew. "The ESO Science Archive Facility enabled us to find and use data of the same object obtained in 2002 and 2009," says Andrea Mehner, an ESO staff member who worked on the study. "The comparison of the 2002 high-resolution UVES spectra with our observations obtained in 2019 with ESO's newest high-resolution spectrograph ESPRESSO was especially revealing, from both an astronomical and an instrumentation point of view."

Examination of this data suggested that the LBV may have indeed been winding up to a grand final sometime after 2011.

Team member Jose Groh, also of Trinity College, says "We may have detected one of the most massive stars of the local Universe going gently into the night. Our discovery would not have been made without using the powerful ESO 8-meter telescopes, their unique instrumentation, and the prompt access to those capabilities following the recent agreement of Ireland to join ESO."

Combining the 2019 data with contemporaneous Hubble Space Telescope (HST) imagery leaves the authors of the reports with the sense that "the LBV was in an eruptive state at least between 2001 and 2011, which then ended, and may have been followed by a collapse into a massive BH without the production of an SN. This scenario is consistent with the available HST and ground-based photometry."


A star collapsing into a black hole without a supernova would be a rare event, and that argues against the idea. The paper also notes that we may simply have missed the star's supernova during the eight-year observation gap.

LBVs are known to be highly unstable, so the star dropping to a state of less luminosity or producing a dust cover would be much more in the realm of expected behavior.

Says the paper: "A combination of a slightly reduced luminosity and a thick dusty shell could result in the star being obscured. While the lack of variability between the 2009 and 2019 near-infrared continuum from our X-shooter spectra eliminates the possibility of formation of hot dust (⪆1500 K), mid-infrared observations are necessary to rule out a slowly expanding cooler dust shell."

The authors of the report are pretty confident the star experienced a dramatic eruption after 2011. Beyond that, though:

"Based on our observations and models, we suggest that PHL 293B hosted an LBV with an eruption that ended sometime after 2011. This could have been followed by
(1) a surviving star or
(2) a collapse of the LBV to a BH [black hole] without the production of a bright SN, but possibly with a weak transient."

Future of Learning

Changing the way we grade students could trigger a wave of innovation

How students apply what they've learned is more important than a letter or number grade.

Scroll down to load more…