Geneticist: It's time we stopped human evolution

People trust Mother Nature to keep us healthy, forgetting that evolution is brutal and uncaring.

human evolution
Dave Einsel/Getty Images

Measles cases in the U.S. have hit a 25-year high, with 78 new infections in the past week alone. In a sign of the times, a cruise ship with hundreds of Scientologists on board was quarantined in St. Lucia after one passenger was diagnosed with the disease. It's the sort of news you can expect when parents stop vaccinating their children, which many did from the 1990s onward for fear that scientists were foisting remedies on them that were more dangerous than the diseases themselves.

As society has become ever more convenient, hygienic and wrapped in cling film, many hark back with dewy eyes to the natural and supposedly wholesome lifestyles of our ancestors in pre-industrial times. Besides the fear around vaccines, growing numbers of people put their faith in the organic movement, the anti-GM lobby and New Age philosophies. They have increasingly rejected the ability of science to improve our lives, placing an almost religious trust in the benevolence of Mother Nature instead.

Coupled with this is a very positive view of evolution. It is seen as a caring and compassionate force which has shaped us and the rest of the natural world. It almost seems that there is the growing belief that if natural evolution were left to its own devices, then everything would work out for the best.

But this idea of evolution as benign is extraordinarily wide of the mark. Evolution is a brutal and uncaring, even obscene opponent, which the medical world is constantly trying to outmanoeuvre and overcome. Perhaps because of the brilliance of Charles Darwin's theory, evolution has been getting an easy ride for far too long. It's time we started facing the truth about what it really means — before it eats any more of our children.

Evolution unmasked

Evolution stems from the inability of any organism to always hand down a perfect copy of its DNA to the next generation. For this we can thank factors such as the fallibility of the machinery in living organisms that copies DNA; and the basic instability of DNA when exposed to certain chemicals or types of radiation that have always existed in our environment. It means that nobody has ever inherited a perfect copy of their parents' DNA. Indeed, one of the reasons we have two parents is to ensure that, if one copy of our genes going wonky, we have a second back-up gene to cover.

When our DNA mutates, natural selection steps in — and this is where things get really ugly. Natural selection is the process through which the mutations in a species which are "best suited" to their environment thrive, while "less suitable" ones die off. It has dictated everything we see around us, from the length of giraffes' necks to the shape of sharks' fins.

In the past, our ancestors were subjected to full-strength, undiluted, CFC-free, pure-organic, additive-free natural selection. The biggest recipients were young children, for which evolution had the greatest appetite of all. Those with the least useful mutations could look forward to a horrific death by starvation, predators, cannibalism, disease, drought, flash floods, drowning and much more besides. During an average 30 to 40 year human life span, mothers would produce eight to 10 children only to see four to five of them die before reaching the age where they might pass their genes to the next generation.

This was evolution writ large: the inexorable cruel erosion of the vast majority of individuals, who had one set of genes, in favor of the tiny lucky minority who had the genetic ability to survive until they could perpetuate this cruel cycle. By running that little bit faster than their brother or sister, the genetic winners avoided getting ripped apart by a pack of hungry wolves. While they clung to life in times of famine or disease, they watched their siblings fade and die. If we believe the human diversity data, we are a species which was reduced to only around 600 individuals over 100,000 years ago. This is the reality of where we came from, of how "Mother Nature" shaped us as individuals.

Unfortunately, of course, humans are still evolving today. People are still dying from disease and starving from deprivations perpetrated by unequal societies and a lack of access to food and medicine. We remain at the mercy of natural selection, the least moral way for a species to develop. And for the majority of us who deplore cruelty and feel compassion for our fellow man, woman and child, I would argue it creates a moral obligation: to aggressively stop evolution of the human species as a matter of urgency.

The only way to do this is to embrace the results of scientific enquiry. Our greatest achievement as a species has been to break free from the sheer naked ferocity of evolution. It means we need GM food to avoid starvation. We need additives to ensure that the food we grow can be safely consumed before it spoils — an important consideration for an increasing population. And most importantly of all, we need vaccines to prevent disease. We must never again expose our children to the wholesome, fully organic, unblemished and obscene fury of Mother Nature unleashed. Love science, hate evolution. Coming to a car bumper sticker near you soon, I hope.

Alasdair Mackenzie, Reader, Molecular Genetics, University of Aberdeen

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Fast superhighway through the Solar System discovered

Scientists find routes using arches of chaos that can lead to much faster space travel.

Arches of chaos in space manifolds.

Courtesy: Nataša Todorović, Di Wu and Aaron Rosengren/Science Advances
Surprising Science
  • Researchers discovered a route through the Solar System that can allow for much faster spacecraft travel.
  • The path takes advantage of "arches of chaos" within space manifolds.
  • The scientists think this "celestial superhighway" can help humans get to the far reaches of the galaxy.
Keep reading Show less

Hack your brain for better problem solving

Tips from neuroscience and psychology can make you an expert thinker.

Credit: Olav Ahrens Røtne via Unsplash
Mind & Brain

This article was originally published on Big Think Edge.

Problem-solving skills are in demand. Every job posting lists them under must-have qualifications, and every job candidate claims to possess them, par excellence. Young entrepreneurs make solutions to social and global problems the heart of their mission statements, while parents and teachers push for curricula that encourage critical-thinking methods beyond solving for x.

It's ironic then that we continue to cultivate habits that stunt our ability to solve problems. Take, for example, the modern expectation to be "always on." We push ourselves to always be working, always be producing, always be parenting, always be promoting, always be socializing, always be in the know, always be available, always be doing. It's too much, and when things are always on all the time, we deplete the mental resources we need to truly engage with challenges.

If we're serious about solving problems, at work and in our personal lives, then we need to become more adept at tuning out so we can hone in.

Solve problems with others (occasionally)

A side effect of being always on is that we are rarely alone. We're connected through the ceaseless chirps of friends texting, social media buzzing, and colleagues pinging us for advice everywhere we go. In some ways, this is a boon. Modern technologies mediate near endless opportunities for collective learning and social problem-solving. Yet, such cooperation has its limits according to a 2018 study out of Harvard Business School.

In the study, participants were divided into three group types and asked to solve traveling salesman problems. The first group type had to work on the problems individually. The second group type exchanged notes after every round of problem-solving while the third collaborated after every three rounds.

The researchers found that lone problem-solvers invented a diverse range of potential solutions. However, their solutions varied wildly in quality, with some being true light bulb moments and others burnt-out duds. Conversely, the always-on group took advantage of their collective learning to tackle more complex problems more effectively. But social influence often led these groups to prematurely converge around a single idea and abandon potentially brilliant outliers.

It was the intermittent collaborators who landed on the Goldilocks strategy. By interacting less frequently, individual group members had more time to nurture their ideas so the best could shine. But when they gathered together, the group managed to improve the overall quality of their solutions thanks to collective learning.

In presenting their work, the study's authors question the value of always-on culture—especially our submissiveness to intrusions. "As we replace those sorts of intermittent cycles with always-on technologies, we might be diminishing our capacity to solve problems well," Ethan Bernstein, an associate professor at Harvard Business School and one of the study's authors, said in a press release.

These findings suggest we should schedule time to ruminate with our inner geniuses and consult the wisdom of the crowd. Rather than dividing our day between productivity output and group problem-solving sessions, we must also create space to focus on problems in isolation. This strategy provides the best of both worlds. It allows us to formulate our ideas before social pressure can push us to abandon them. But it doesn't preclude the group knowledge required to refine those ideas.

And the more distractions you can block out or turn off, the more working memory you'll have to direct at the problem.

A problem-solving booster

The next step is to dedicate time to not dealing with problems. Counterintuitive as it may seem, setting a troublesome task aside and letting your subconscious take a crack at it improves your conscious efforts later.

How should we fill these down hours? That's up to you, but research has shown time and again that healthier habits produce hardier minds. This is especially true regarding executive functions—a catchall term that includes a person's ability to self-control, meet goals, think flexibly, and, yes, solve problems.

"Exercisers outperform couch potatoes in tests that measure long-term memory, reasoning, attention, problem-solving, even so-called fluid-intelligence tasks. These tasks test the ability to reason quickly and think abstractly, improvising off previously learned material to solve a new problem. Essentially, exercise improves a whole host of abilities prized in the classroom and at work," writes John Medina, a developmental molecular biologist at the University of Washington.

One such study, published in the Frontiers in Neuroscience, analyzed data collected from more than 4,000 British adults. After controlling for variables, it found a bidirectional relationship between exercise and higher levels of executive function over time. Another study, this one published in the Frontiers in Aging Neuroscience, compared fitness data from 128 adults with brain scans taken as they were dual-tasking. Its findings showed regular exercisers sported more active executive regions.

Research also demonstrates a link between problem-solving, healthy diets, and proper sleep habits. Taken altogether, these lifestyle choices also help people manage their stress—which is known to impair problem-solving and creativity.

Of course, it can be difficult to untangle the complex relationship between cause and effect. Do people with healthy life habits naturally enjoy strong executive functions? Or do those habits bolster their mental fitness throughout their lives?

That's not an easy question to answer, but the Frontiers in Neuroscience study researchers hypothesize that it's a positive feedback loop. They posit that good sleep, nutritious food, and regular exercise fortify our executive functions. In turn, more potent executive decisions invigorate healthier life choices. And those healthy life choices—you see where this is going.

And while life choices are ultimately up to individuals, organizations have a supportive role to play. They can foster cultures that protect off-hours for relaxing, incentivize healthier habits with PTO, and prompt workers to take time for exercise beyond the usual keyboard calisthenics.

Nor would such initiatives be entirely selfless. They come with the added benefit of boosting a workforce's collective problem-solving capabilities.

Live and learn and learn some more

Another advantage of tuning out is the advantage to pursue life-long learning opportunities. People who engage in creative or problem-solving activities in their downtime—think playing music, puzzles, and even board games—show improved executive functions and mental acuity as they age. In other words, by learning to enjoy the act of problem-solving, you may enhance your ability to do so.

Similarly, lifelong learners are often interdisciplinary thinkers. By diving into various subjects, they can come to understand the nuances of different skills and bodies of knowledge to see when ideas from one field may provide a solution to a problem in another. That doesn't mean lifelong learners must become experts in every discipline. On the contrary, they are far more likely to understand where the limits of their knowledge lie. But those self-perceived horizons can also provide insight into where collaboration is necessary and when to follow someone else's lead.

In this way, lifelong learning can be key to problem-solving in both business and our personal lives. It pushes us toward self-improvement, gives us an understanding of how things work, hints at what's possible, and, above all, gives us permission to tune out and focus on what matters.

Cultivate lifelong learning at your organization with lessons 'For Business' from Big Think Edge. At Edge, more than 350 experts, academics, and entrepreneurs come together to teach essential skills in career development and lifelong learning. Heighten your problem-solving aptitude with lessons such as:

  • Make Room for Innovation: Key Characteristics of Innovative Companies, with Lisa Bodell, Founder and CEO, FutureThink, and Author, Why Simple Wins
  • Use Design Thinking: An Alternative Approach to Tackling the World's Greatest Problems, with Tim Brown, CEO and President, IDEO
  • The Power of Onlyness: Give Your People Permission to Co-Create the Future, with Nilofer Merchant, Marketing Expert and Author, The Power of Onlyness
  • How to Build a Talent-First Organization: Put People Before Numbers, with Ram Charan, Business Consultant
  • The Science of Successful Things: Case Studies in Product Hits and Flops, with Derek Thompson, Senior Editor, The Atlantic, and Author, Hit Makers

Request a demo today!

How AI learned to paint like Rembrandt

The Rijksmuseum employed an AI to repaint lost parts of Rembrandt's "The Night Watch." Here's how they did it.

Credit: Courtesy of Robert Erdmann / Rijksmuseum
Culture & Religion
  • In 1715, Amsterdam's Town Hall sliced off all four outer edges of Rembrandt's priceless masterpiece so that it would fit on a wall.
  • Neural networks were used to fill in the missing pieces.
  • An unprecedented collaboration between man and machine is now on display at the Rijksmuseum.
Keep reading Show less
Culture & Religion

Pragmatism: How Americans define truth

If something is "true," it needs to be shown to work in the real world.

Quantcast