The bacteria in our guts can tell time

For the first time, it was discovered that nonphotosynthetic bacteria have a circadian clock.

The bacteria in our guts can tell time
Credit: Paulista / Adobe Stock
  • For the first time, nonphotosynthetic bacteria are shown to have a circadian clock.
  • B. subtilis thrives in the gastrointestinal tracts of humans as well as grass-feeding ruminants.
  • The researchers believe that this rhythm provides bacteria with an advantage.

Despite an ancient warning from the Buddha, we still like to pretend that we're one self—a unified biological animal that persists through time. Sure, we know that our biological processes are dictated by circadian rhythms. What we overlook is that we're really the sum of billions of different components, and some of those "parts" have their own clocks.

The Buddha might not have had a microscope, but his keen insight into human psychology translates well to biology. That's the word from a new study, published in Science Advances, that found the bacterium Bacillus subtilis is run by its own circadian rhythms.

Also known as "grass bacillus," B. subtilis thrives in the gastrointestinal tracts of humans as well as grass-feeding ruminants. You can easily and cheaply purchase bottles of this bacterium as a probiotic due to its supposed immune system-boosting properties. The strain is found in soil, though you probably want to secure it by other means, making it a favorite of supplement companies. The European Food Safety Authority rates it as "Qualified Presumption of Safety."

For this study, the European research team chose B. subtilis thanks to previous observations that, like humans, it seems to follow a 24-hour circadian clock. It also responds to red and blue lights (again, like humans), causing the researchers to believe that it entrains to environmental conditions. The team discovered this by enzymatically inducing bioluminescence in order to stare into this mysterious world.

Lead author, Professor Martha Merrow from Munich's Ludwig Maximilans University, says

"We've found for the first time that non-photosynthetic bacteria can tell the time. They adapt their molecular workings to the time of day by reading the cycles in the light or in the temperature environment."

Zeitgebers are cues (such as temperature fluctuations) that allow biological organisms to synchronize with their environment. In humans, it's what makes us sleepy as the sun sets and raises cortisol levels in our blood a few hours before sunrise. This bacterium appears to maintain a similar clock. Rather than only responding to light and dark, B. subtilis takes cues from temperature drops, hinting at a circadian rhythm.

Although bacteria comprise 15 percent of all living matter, the team notes that circadian clocks have not been identified in nonphotosynthetic bacteria—until now. They note that bacterium such as Rhodospirillum rubrum displays rhythmic processes such as enzymatic activity yet has no apparent circadian clock.

Co-author Dr. Antony Dodd, a researcher in the UK's John Innes Centre, notes:

"Our study opens doors to investigate circadian rhythms across bacteria. Now that we have established that bacteria can tell the time we need to find out the processes that cause these rhythms to occur and understand why having a rhythm provides bacteria with an advantage."

Understanding the survival methods of bacterium clues us in on the long, slow process of evolution. While this new discovery does not state the purpose of the circadian clock in B. subtilis, it opens up a new line of research for one of the most perplexing components of human biology: our guts.


--

Stay in touch with Derek on Twitter and Facebook. His most recent book is "Hero's Dose: The Case For Psychedelics in Ritual and Therapy."


Credit: fergregory via Adobe Stock
Surprising Science
  • Australian scientists found that bodies kept moving for 17 months after being pronounced dead.
  • Researchers used photography capture technology in 30-minute intervals every day to capture the movement.
  • This study could help better identify time of death.
Keep reading Show less
Credit: Willrow Hood / 362693204 via Adobe Stock
13-8

The distances between the stars are so vast that they can make your brain melt. Take for example the Voyager 1 probe, which has been traveling at 35,000 miles per hour for more than 40 years and was the first human object to cross into interstellar space. That sounds wonderful except, at its current speed, it will still take another 40,000 years to cross the typical distance between stars.

Worse still, if you are thinking about interstellar travel, nature provides a hard limit on acceleration and speed. As Einstein showed, it's impossible to accelerate any massive object beyond the speed of light. Since the galaxy is more than 100,000 light-years across, if you are traveling at less than light speed, then most interstellar distances would take more than a human lifetime to cross. If the known laws of physics hold, then it seems a galaxy-spanning human civilization is impossible.

Unless of course you can build a warp drive.

Keep reading Show less

Just when the Middle Ages couldn’t get worse, everyone had bunions

The Black Death wasn't the only plague in the 1300s.

By Loyset Liédet - Public Domain, wikimedia commons
Culture & Religion
  • In a unique study, researchers have determined how many people in medieval England had bunions
  • A fashion trend towards pointed toe shoes made the affliction common.
  • Even monks got in on the trend, much to their discomfort later in life.
Keep reading Show less
Quantcast